精英家教网 > 高中数学 > 题目详情
16.直线xsinα-y+1=0的倾角的取值范围[0,$\frac{π}{4}$]∪[$\frac{3π}{4},π$).

分析 由直线方程求出直线斜率的范围,再由正切函数的单调性求得倾角的取值范围.

解答 解:直线xsinα-y+1=0的斜率为k=sinα,
则-1≤k≤1,
设直线xsinα-y+1=0的倾斜角为θ(0≤θ<π),
则-1≤tanθ≤1,
∴θ∈[0,$\frac{π}{4}$]∪[$\frac{3π}{4},π$).
故答案为:[0,$\frac{π}{4}$]∪[$\frac{3π}{4},π$).

点评 本题考查直线的倾斜角,考查了直线倾斜角和斜率的关系,训练了由直线斜率的范围求倾斜角的范围,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知集合A={0,m,2},B={x|x3-4x=0},若A=B,则m=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若z+$\overline{z}$=4,z•$\overline{z}$=8,则$\frac{\overline{z}}{z}$=(  )
A.iB.-iC.±1D.±i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.以A(3,-5)为圆心,并且与直线x-7y+2=0相切的圆的方程为(x-3)2+(y+5)2=32.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.A={x|-1<x<3},B={x|x>2},则∁RB={x|x≤2},A∪B={x|x>-1};A∩B={x|2<x<3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=-x+log2$\frac{1-x}{1+x}$.求f($\frac{1}{2014}$)+f(-$\frac{1}{2014}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.函数f(x)=ax3+bx2+cx+d在[-1,0]与[4,5]上的单调性相同,在[0,2]与[4,5]上的单调性相反.
(1)求c的值;
(2)当x为何值时,f(x)取得极值?并判断处这些极值点的横坐标与2、4的大小关系?
(3)f(x)的图象上是否存在点M(x0,y0),使f(x)在M处的切线斜率为3b?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在平面直角坐标系中,①若直线y=x+b与圆x2+y2=4相切,即圆x2+y2=4上恰有一个点到直线y=x+b的距离为0,则b的值为$±2\sqrt{2}$;②若将①中的“圆x2+y2=4”改为“曲线x=$\sqrt{4-{y}^{2}}$”,将“恰有一个点”改为“恰有三个点”,将“距离为0”改为“距离为1”,即若曲线x=$\sqrt{4-{y}^{2}}$上恰有三个点到直线y=x+b的距离为1,则b的取值范围是(-$\sqrt{2}$,$\sqrt{2}$-2]..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设M={a,b,c},N={-1,0,1}.
(1)求从M到N的映射的个数;
(2)从M到N的映射满足f(a)+f(b)+f(c)=0,试确定这样的映射f的个数.

查看答案和解析>>

同步练习册答案