精英家教网 > 高中数学 > 题目详情
如图,已知椭圆E的中心为O,长轴的两个端点为A,B,右焦点为F,且
AF
=7
FB
,椭圆E的右准线l的方程为x=
16
3

(Ⅰ)求椭圆E的标准方程;
(Ⅱ)若N为准线l上一点(在x轴上方),AN与椭圆交于点M,且
AN
MF
=0
AM
MN
,求λ.
考点:直线与圆锥曲线的综合问题
专题:
分析:(Ⅰ)利用
AF
=7
FB
,求出3a=4c,利用椭圆E的右准线l的方程为x=
16
3
,求出
a2
c
=
16
3
,联立求出a,c,可得b,即可求椭圆E的标准方程;
(Ⅱ)由
AN
MF
=0
,可得(x+4)(3-x)-y2=0,即y2=-x2-x+12,利用M满足
x2
16
+
y2
7
=1
,求出M的横坐标,根据
AM
MN
,可得
20
9
+4=λ(
16
3
-
20
9
),即可求出λ.
解答: 解:(Ⅰ)设椭圆
x2
a2
+
y2
b2
=1(a>b>0),则
AF
=7
FB

∴a+c=7(a-c),
∴3a=4c①,
∵椭圆E的右准线l的方程为x=
16
3

a2
c
=
16
3

解①②可得a=4,c=3,
∴b2=a2-c2=7,
∴椭圆E的标准方程为
x2
16
+
y2
7
=1

(Ⅱ)设M(x,y),由
AN
MF
=0
,可得(x+4)(3-x)-y2=0,
∴y2=-x2-x+12,
∴M满足
x2
16
+
y2
7
=1

消去y,可得9x2+16x-80=0,
解得x=
20
9
或x=-4(舍去)
AM
MN

20
9
+4=λ(
16
3
-
20
9
),
∴λ=2.
点评:本题考查椭圆的方程与性质,考查向量知识的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=2 
x
3
,等差数列{an}中,a2+a5+a8=6,则f(a1)f(a2)…f(a9)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设有无穷数列{an},且{nk}为正整数集N*的无限子集,n1<n2<…nk<…,则数列an1an2,…,ank,…称为数列{an}的一个子列,记为{ank}.下面关于子列的三个命题
①对任何正整数k,必有nk≥k;
②已知{an}为等差数列,则“{nk}为等差数列”是“{ank}为等差数列”的充分不必要条件;
③已知{an}为等比数列,则“{nk}为等差数列”是“{ank}为等比数列”的充分不必要条件.
真命题的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
m
=(bsin
x
2
,acos
x
2
),
n
=(cos
x
2
,-cos
x
2
),f(x)=
m
n
+a,其中a,b,x∈R.且满足f(
π
3
)=2,f′(0)=
3

(Ⅰ)求a,b的值;
(Ⅱ)若关于x的方程f(x)-log 
1
3
k=0在区间[0,π]上总有实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面内的动点P到两定点M(-2,0)、N(1,0)的距离之比为2:1.
(Ⅰ)求P点的轨迹方程;
(Ⅱ)过M点作直线,与P点的轨迹交于不同两点A、B,O为坐标原点,求△OAB的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆锥曲线C的焦点F1,F2在x轴上,离心率为
3
2
,其上的动点P满足|PF1|+|PF2|=4,
(Ⅰ)求曲线C的标准方程;
(Ⅱ)若曲线C的一条切线l交x、y轴正半轴交于A,B两点,求S△AOB的最小值和此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-ax-1(a∈R),其中e为自然对数的底数.
(Ⅰ)若f(x)≥0对任意x≥0恒成立,求a的取值范围;
(Ⅱ)求证:当n≥2,n∈N时,恒有1n+4n+7n+…+(3n-2)n
e
1
3
e-1
(3n)n

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三内角A,B,C所对的边分别是a,b,c,且2bcosC=2a-c.
(Ⅰ)求角B的大小;
(Ⅱ)若sinAsinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在圆的内接四边形ABCD中,∠ABC=90°,∠ABD=30°,∠BDC=45°,AD=1,则BC=
 

查看答案和解析>>

同步练习册答案