精英家教网 > 高中数学 > 题目详情
已知圆锥曲线C的焦点F1,F2在x轴上,离心率为
3
2
,其上的动点P满足|PF1|+|PF2|=4,
(Ⅰ)求曲线C的标准方程;
(Ⅱ)若曲线C的一条切线l交x、y轴正半轴交于A,B两点,求S△AOB的最小值和此时直线l的方程.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(Ⅰ)利用椭圆的定义求出a,利用离心率为
3
2
,求出c,即可求出b,从而可求曲线C的标准方程;
(Ⅱ)方程为y=kx+b(k<0,b>0)与椭圆方程联立,利用△=0,可得b2=4k2+1,表示出S△AOB,利用基本不等式求最小值,从而得到此时直线l的方程.
解答: 解:(Ⅰ)∵动点P满足|PF1|+|PF2|=4,
∴2a=4,
∴a=2,
∵离心率为
3
2

c
a
=
3
2

∴c=
3

b=
a2-c2
=1,
∴曲线C的标准方程为
x2
4
+y2=1
(3分)                    
(Ⅱ)由已知直线l的斜率存在且不为0,l交x、y轴正半轴交于A、B两点,
可设方程为y=kx+b(k<0,b>0)(4分)
y=kx+b
x2
4
+y2=1
消去y得(4k2+1)x2+8kbx+4b2-4=0(6分)
△=64k2b2-4(4k2+1)(4b2-4)=0,∴b2=4k2+1(8分)
∴S△AOB=
1
2
|-
b
k
||b|
=
1
2
|4k+
1
k
|
=|2k|+|
1
2k
|≥2(9分)
当且仅当|2k|=|
1
2k
|(k<0)即k=-
1
2
时等号成立,此时b=
2
(11分)
直线l的方程y=-
1
2
x+
2
,△AOB面积的最小值为2.(12分)
点评:本题考查椭圆的方程,考查直线与椭圆的位置关系,考查三角形面积的计算,考查基本不等式的运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出以下四个命题:
①“全等的三角形面积相等”;
②“对角线互相垂直且相等的四边形是正方形”;
③“若x2≠9,则x≠3”;     
④“若x2>y2,则x>y”的否命题.
其中真命题是(  )
A、①③B、②③C、①②D、①④

查看答案和解析>>

科目:高中数学 来源: 题型:

若x,y满足约束条件
2x+y≥6
0≤x≤2
0≤y≤5
,则z=2x+3y的最小值为(  )
A、7B、10C、16D、19

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是某市2月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择2月1日至2月12日中的某一天到达该市,并停留3天.
(1)求此人到达当日空气质量重度污染的概率;
(2)设ξ是此人停留期间空气重度污染的天数,求ξ的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆E的中心为O,长轴的两个端点为A,B,右焦点为F,且
AF
=7
FB
,椭圆E的右准线l的方程为x=
16
3

(Ⅰ)求椭圆E的标准方程;
(Ⅱ)若N为准线l上一点(在x轴上方),AN与椭圆交于点M,且
AN
MF
=0
AM
MN
,求λ.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=ax2+2bx+c,若5a+4b+c=0,f(-1)•f(1)<0,数列{an}的前n项和Sn=f(n).
(1)求证:方程f(x)=0必有两个不等实根x1、x2,且
4
3
<x1+x2<4;
(2)若c=0,an>0,且互不相等正整数p,q,n,使得p+q=2n,求证:SpSq<Sn2

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙二人比赛投篮,每人连续投3次,投中次数多者获胜.若甲前2次每次投中的概率都是
1
3
,第3次投中的概率
1
2
;乙每次投中的概率都是
2
5
,甲乙每次投中与否相互独立.
(Ⅰ)求乙直到第3次才投中的概率;
(Ⅱ)在比赛前,从胜负的角度考虑,你支持谁?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
6
3
,长轴长为2
3

(Ⅰ)求椭圆的方程;
(Ⅱ)若直线y=kx-
1
2
交椭圆C于A、B两点,试问:在y轴正半轴上是否存在一个定点M满足
MA
MB
,若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(x,8),
b
=(4,y),
c
=(x,y)(x>0,y>0),若
a
b
,则|
c
|的最小值为
 

查看答案和解析>>

同步练习册答案