精英家教网 > 高中数学 > 题目详情
9.已知直三棱柱ABC-A1B1C1中,∠BAC=90°,侧面BCC1B1的面积为4,则直三棱柱ABC-A1B1C1外接球表面积的最小值为(  )
A.B.C.16πD.32π

分析 设BC=2x,BB1=2y,则4xy=2,利用直三棱柱ABC-A1B1C1中,∠BAC=90°,可得直三棱柱ABC-A1B1C1外接球的半径为$\sqrt{{x}^{2}+{y}^{2}}$≥$\sqrt{2xy}$=$\sqrt{2}$,即可求出三棱柱ABC-A1B1C1外接球表面积的最小值.

解答 解:设BC=2x,BB1=2y,则4xy=4,
∵直三棱柱ABC-A1B1C1中,∠BAC=90°,
∴直三棱柱ABC-A1B1C1外接球的半径为$\sqrt{{x}^{2}+{y}^{2}}$≥$\sqrt{2xy}$=$\sqrt{2}$,
∴直三棱柱ABC-A1B1C1外接球表面积的最小值为4π×2=8π.
故选:B.

点评 本题考查三棱柱ABC-A1B确定1C1外接球表面积的最小值,考查基本不等式的运用,确定直三棱柱ABC-A1B1C1外接球的半径的最小值是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow a$,$\overrightarrow b$满足$|\overrightarrow a|=2$,$\overrightarrow a(\overrightarrow b-\overrightarrow a)=-3$,则向量$\overrightarrow b$在$\overrightarrow a$方向上的投影为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设n≥2,n∈N*,有序数组(a1,a2,…,an)经m次变换后得到数组(bm,1,bm,2,…,bm,n),其中b1,i=ai+ai+1,bm,i=bm-1,i+bm-1,i+1(i=1,2,…,n),an+1=a1,bm-1,n+1=bm-1,1(m≥2).例如:有序数组(1,2,3)经1次变换后得到数组(1+2,2+3,3+1),即(3,5,4);经第2次变换后得到数组(8,9,7).
(1)若ai=i(i=1,2,…,n),求b3,5的值;
(2)求证:bm,i=$\sum_{j=0}^{m}$ai+jCmj,其中i=1,2,…,n.
(注:i+j=kn+t时,k∈N*,i=1,2,…,n,则ai+j=a1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(Ⅰ)解不等式|x-1|+|2x+1|>3
(Ⅱ)如果a,b∈[-1,1],求证|1+$\frac{ab}{4}$|>|$\frac{a+b}{2}$|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知角α是第二象限角,直线2x+(tanα)y+1=0的斜率为$\frac{8}{3}$,则cosα等于(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩的茎叶图如图,其中甲班学生成绩的平均分是85,乙班学生成绩的中位数是89.
(1)求x和y的值;
(2)计算乙班7位学生成绩的方差s2
(3)从成绩在90分以上的学生中随机抽取两名学生,求乙班至少有一名学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某程序框图如图所示,则该程序运行后输出的值是(  )
A.2014B.2015C.2016D.2017

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若α,β是两个平面,m,n是两条线,则下列命题不正确的是①
①如果m⊥n,m⊥α,n∥β,那么α⊥β.
②如果m⊥α,n∥α,那么m⊥n.
③如果α∥β,m?α,那么m∥β.
④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)=2lnx-$\frac{3}{x}$-m,若关于x的方程f(f(x))=x恰有两个不相等的实数根,则m的取值范围是(  )
A.(2ln3-4,+∞)B.(-∞,2ln3-4)C.(-4,+∞)D.(-∞,-4)

查看答案和解析>>

同步练习册答案