【题目】已知椭圆C: 的左右焦点与其短轴的一个端点是正三角形的三个顶点,点D 在椭圆C上,直线l:y=kx+m与椭圆C相交于A、P两点,与x轴、y轴分别相交于点N和M,且PM=MN,点Q是点P关于x轴的对称点,QM的延长线交椭圆于点B,过点A、B分别作x轴的垂涎,垂足分别为A1、B1
(1)求椭圆C的方程;
(2)是否存在直线l,使得点N平分线段A1B1?若存在,求求出直线l的方程,若不存在,请说明理由.
【答案】
(1)
解:∵椭圆C: 的左右焦点与其短轴的一个端点是正三角形的三个顶点,点D 在椭圆C上,
∴由题意得 ,解得a2=4,b2=3,
∴椭圆C的方程为 .
(2)
解:假设存在这样的直线l:y=kx+m,∴M(0,m),N(﹣ ,0),
∵PM=MN,∴P( ,2m),Q( ),
∴直线QM的方程为y=﹣3kx+m,
设A(x1,y1),由 ,得(3+4k2)x2+8kmx+4(m2﹣3)=0,
∴ ,∴ ,
设B(x2,y2),由 ,得(3+36k2)x2﹣24kmx+4(m2﹣3)=0,
∴x2+ = ,∴x2=﹣ ,
∵点N平分线段A1B1,∴ ,
∴﹣ =﹣ ,∴k= ,
∴P(±2m,2m),∴ ,解得m= ,
∵|m|= <b= ,∴△>0,符合题意,
∴直线l的方程为y=
【解析】(1)由椭圆的左右焦点与其短轴的一个端点是正三角形的三个顶点,点D 在椭圆C上,列出方程组,求出a,b,由此能求出椭圆C的方程.(2)假设存在这样的直线l:y=kx+m,则直线QM的方程为y=﹣3kx+m,由 ,得(3+4k2)x2+8kmx+4(m2﹣3)=0,由 ,得(3+36k2)x2﹣24kmx+4(m2﹣3)=0,由此利用根的判别式、韦达定理、中点坐标公式,结合已知条件,能求出直线l的方程.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2.5cos(ωx+φ)(ω>0,|φ|< )的部分图象如图所示,M、N两点之间的距离为13,且f(3)=0,若将函数f(x)的图象向右平移t(t>0)个单位长度后所得函数的图象关于坐标原点对称,则t的最小值为( )
A.7
B.8
C.9
D.10
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是2017年第一季度五省GDP情况图,则下列陈述中不正确的是( )
A. 2017年第一季度总量和增速由高到低排位均居同一位的省只有1个
B. 与去年同期相比,2017年第一季度五个省的总量均实现了增长
C. 去年同期河南省的总量不超过4000亿元
D. 2017年第一季度增速由高到低排位第5的是浙江省
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义域为D的函数y=f(x),如果存在区间[m,n]D,其中m<n,同时满足:①f(x)在[m,n]内是单调函数;②当定义域是[m,n]时,f(x)的值域也是[m,n]. 则称函数f(x)是区间[m,n]上的“保值函数”,区间[m,n]称为“保值区间”.
(1)求证:函数g(x)=x2﹣2x不是定义域[0,1]上的“保值函数”.
(2)若函数f(x)=2+ ﹣ (a∈R,a≠0)是区间[m,n]上的“保值函数”,求a的取值范围.
(3)对(2)中函数f(x),若不等式|a2f(x)|≤2x对x≥1恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(1)若不等式f(x)﹣f(x+m)≤1恒成立,求实数m的最大值;
(2)当a< 时,函数g(x)=f(x)+|2x﹣1|有零点,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,点,直线.
(1)求与圆相切,且与直线垂直的直线方程;
(2)在直线上(为坐标原点),存在定点(不同于点),满足:对于圆上任一点,都有为一常数,试求所有满足条件的点的坐标.
【答案】(1);(2)答案见解析.
【解析】试题分析:
(1)设所求直线方程为,利用圆心到直线的距离等于半径可得关于b的方程,解方程可得,则所求直线方程为
(2)方法1:假设存在这样的点,由题意可得,则,然后证明为常数为即可.
方法2:假设存在这样的点,使得为常数,则,据此得到关于的方程组,求解方程组可得存在点对于圆上任一点,都有为常数.
试题解析:
(1)设所求直线方程为,即,
∵直线与圆相切,∴,得,
∴所求直线方程为
(2)方法1:假设存在这样的点,
当为圆与轴左交点时,;
当为圆与轴右交点时,,
依题意,,解得,(舍去),或.
下面证明点对于圆上任一点,都有为一常数.
设,则,
∴ ,
从而为常数.
方法2:假设存在这样的点,使得为常数,则,
∴,将代入得,
,即
对恒成立,
∴,解得或(舍去),
所以存在点对于圆上任一点,都有为常数.
点睛:求定值问题常见的方法有两种:
(1)从特殊入手,求出定值,再证明这个值与变量无关.
(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.
【题型】解答题
【结束】
22
【题目】已知函数的导函数为,其中为常数.
(1)当时,求的最大值,并推断方程是否有实数解;
(2)若在区间上的最大值为-3,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某机械厂要将长,宽的长方形铁皮进行裁剪.已知点为的中点,点在边上,裁剪时先将四边形沿直线翻折到处(点分别落在直线下方点处,交边于点),再沿直线裁剪.
(1)当时,试判断四边形的形状,并求其面积;
(2)若使裁剪得到的四边形面积最大,请给出裁剪方案,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com