精英家教网 > 高中数学 > 题目详情
.(本小题满分14分)
直棱柱中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,
(Ⅰ) 求证:AC⊥平面BB1C1C
(Ⅱ)若P为A1B1的中点,求证:DP∥平面BCB1,且DP∥平面ACB1
证明:(Ⅰ)直棱柱中,BB1⊥平面ABCD,BB1⊥AC.……2分
∠BAD=∠ADC=90°,
,∠CAB=45°,∴ BC⊥AC.………… 5分[
平面BB1C1C, AC⊥平面BB1C1C.…………7分
(Ⅱ)证明:由P为A1B1的中点,有PB1‖AB,且PB1=AB.…………2分
又∵DC‖AB,DC=AB,DC ∥PB1,且DC= PB1,…4分
∴DC B1P为平行四边形,从而CB1∥DP.   
又CB1面ACB1,DP 面ACB1,DP‖面ACB1…6分
同理,DP‖面BCB1.  …………7分
(注:第(Ⅰ)问7分,第(Ⅱ)问7分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
如图,己知中,
 
(1)求证:不论为何值,总有
(2)若求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)
如图,三棱柱ABCA1B1C1侧棱与底面垂直,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.

(1)求证:ACB1C
(2)求证:AC 1∥平面CDB1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在边长为a的正方体中,MNPQ分别为ADCD 的中点.
(1)求点P到平面MNQ的距离;
(2)求直线PN与平面MPQ所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,,AA1=4,.点D是AB的中点.

(1)求证:AC⊥BC1
(2)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
四棱锥中,底面为矩形,平面底面,点是侧棱的中点.

(Ⅰ)求证:平面
(Ⅱ)求二面角的大小.
(Ⅲ)在线段求一点,使点到平面的距离为.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,PA⊥底面ABCD,,AD=CD=1,∠=120°,=,∠=90°,M是线段PD上的一点(不包括端点).

(1)求证:BC⊥平面PAC;
(2)求异面直线AC与PD所成的角的余弦值;
(3)若点M为侧棱PD中点,求直线MA与平面PCD
所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥P-ABCD中,底面ABCD是边长为的正方形,E为PC的中点,PB=PD.
(1)证明:BD ⊥平面PAC.

(2)若PA=PC=2,求三棱锥E-BCD的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分10分)
如图,正方形所在平面与所在平面垂直,中点为.
(1)求证:
(2)求直线与平面所成角

查看答案和解析>>

同步练习册答案