精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
如图,在边长为a的正方体中,MNPQ分别为ADCD 的中点.
(1)求点P到平面MNQ的距离;
(2)求直线PN与平面MPQ所成角的正弦值.
解:方法1(几何法):∵平面,∴点P到平面MNQ的距离等于点B到平面MNQ的距离.设.∵平面MNQ平面ABCD,∴由平面MNQ,∴点P到平面MNQ的距离为.……………5分

(2)设点N到平面MNQ的距离为d.可以求得
.由
,∴.……………10分
设直线PN与平面MPQ所成的角为,则.故直线PN与平面MPQ所成的角的正弦值为.……………12分
方法2(空间向量方法) 建立如图所示的空间直角坐标系.
(1)是平面MNQ的一个法向量.

∴点P到平面MNQ的距离.……………5分
(2)设平面MPQ的一个法向量为

.……………10分
.设直线PN与平面MPQ所成的角为,则
.……………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在四棱锥中,底面为菱形,, , ,的中点,的中点

(Ⅰ)证明:直线
(Ⅱ)求异面直线AB与MD所成角的大小;
(Ⅲ)求点B到平面OCD的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在直三棱柱ABC-A1B1C1中,AB=AC=1,∠BAC=90°,且异面直线A1B与B1C1所成的角等于60°,设AA1="a" .

(1)求a的值;
(2)求平面A1BC1与平面B1BC1所成的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分14分)
直棱柱中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,
(Ⅰ) 求证:AC⊥平面BB1C1C
(Ⅱ)若P为A1B1的中点,求证:DP∥平面BCB1,且DP∥平面ACB1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

 如图,已知点P是三角形ABC外一点,且底面
,点分别在棱上,且 。 。 

(1)求证:平面
(2)当的中点时,求与平面所成的角的大小;
(3)是否存在点使得二面角为直二面角?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,四棱锥S-ABCD的底面是矩形,AB=a,AD=2,SA=1,且SA⊥底面ABCD,若边BC上存在异于B,C的一点P,使得.
(1)求a的最大值;
(2)当a取最大值时,求异面直线AP与SD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题12分)
如图, 在三棱柱中, 底面, ,, 点D的中点.

(1) 求证;
(2) 求证

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(本题满分14分)
在多面体中,点是矩形的对角线的交点,三角形是等边三角形,棱
(Ⅰ)证明:平面
(Ⅱ)设
与平面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图甲所示,在正方形中,EF分别是边的中点,D是EF的中点,现沿SESFEF把这个正方形折成一个几何体(如图乙所示),使三点重合于点G,则下面结论成立的是( )
A.SD⊥平面EFG B.GF⊥平面SEF C.SG⊥平面EFG D.GD⊥平面SEF

查看答案和解析>>

同步练习册答案