精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,,AA1=4,.点D是AB的中点.

(1)求证:AC⊥BC1
(2)求二面角的平面角的正切值.

解答:(1)证明:直三棱柱ABC-A1B1C1,底面三边长AC=3,BC=4,AB=5,
,∴AC⊥BC,                   2分
又 AC⊥,且
∴ AC⊥平面BCC1,又平面BCC1                     4分
∴ AC⊥BC                                          5分
 
(2)解法一:过,则E为BC的中点,过E做EF^B1C于F,连接DF,
中点,∴ ,又平面
平面
平面平面
 , 
平面平面
是二面角的平面角          9分
AC=3,BC=4,AA1=4,
∴在中,

∴二面角的正切值为
解法二:以分别为轴建立如图所示空间直角坐标系      6分
AC=3,BC=4,AA1=4,
 

平面的法向量,       8分
设平面的法向量
的夹角(或其补角)的大小就是二面角的大小
则由  令,则
                                  10分
,则        11分
∵二面角是锐二面角
∴二面角的正切值为         12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,长方体中,AD=2,AB=AD=4,,点E是AB的中点,点F是的中点。 
(1)求证:;  
(2)求异面直线所成的角的大小;

(本题满分12分)
已知,且以下命题都为真命题:
命题 实系数一元二次方程的两根都是虚数;
命题 存在复数同时满足.
求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分14分)
直棱柱中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,
(Ⅰ) 求证:AC⊥平面BB1C1C
(Ⅱ)若P为A1B1的中点,求证:DP∥平面BCB1,且DP∥平面ACB1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

 如图,已知点P是三角形ABC外一点,且底面
,点分别在棱上,且 。 。 

(1)求证:平面
(2)当的中点时,求与平面所成的角的大小;
(3)是否存在点使得二面角为直二面角?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,四棱锥S-ABCD的底面是矩形,AB=a,AD=2,SA=1,且SA⊥底面ABCD,若边BC上存在异于B,C的一点P,使得.
(1)求a的最大值;
(2)当a取最大值时,求异面直线AP与SD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题14分)如图,在四棱锥中,底面是边长为1的菱形,, , ,的中点,的中点.
(Ⅰ)证明:
(Ⅱ)求异面直线所成角的大小;
(Ⅲ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题12分)
如图, 在三棱柱中, 底面, ,, 点D的中点.

(1) 求证;
(2) 求证

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在三棱柱ADF—BCE中,侧棱底面,底面是等腰直角三角形,且MG分别是ABDF的中点.

(1)求证GA∥平面FMC;
(2)求直线DM与平面ABEF所成角。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图一,平面四边形关于直线对称,.把沿折起(如图二),使二面角的余弦值等于.对于图二,
(Ⅰ)求
(Ⅱ)证明:平面
(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案