精英家教网 > 高中数学 > 题目详情
(2011•黄冈模拟)设数列{an}的前n项和为Sn,满足Sn=
n(a1+an)
2
(n∈N*)
;数列{bn}满足b1+3b2+32b3+…+3n-1bn=
n
3
(n∈N*)

(1)求证:数列{an}是等差数列.
(2)若a1=1,a2=2,求数列{an}和{bn}的通项公式;
(3)在(2)的条件下,设数列{
an
bn
}
前n项和为Tn,试比较
4
3
Tn
与(2n2+3n-2)•2n-1的大小.
分析:(1)根据题目条件可得2Sn=n(a1+an),则当n≥2时,2Sn-1=(n-1)(a1+an-1)两式作差可得a1+(n-2)an=(n-1)an-1,进而a1+(n-1)an+1=nan,两式作差可得an+1-an=an-an-1,根据等差数列数列的定义可得结论;
(2)根据等差数列的定义可求出其通项公式,利用递推关系可求出数列{bn}的通项公式;
(3)利用错位相消法求出数列{
an
bn
}
前n项和为Tn,然后利用作差可比较
4
3
Tn
与(2n2+3n-2)•2n-1的大小.
解答:解:(1)∵Sn=
n(a1+an)
2
,∴2Sn=n(a1+an)①
当n≥2时,2Sn-1=(n-1)(a1+an-1)②
①-②得:2an=a1+nan-(n-1)an-1,即a1+(n-2)an=(n-1)an-1
进而a1+(n-1)an+1=nan
③-④得2(n-1)an=(n-1)an-1+(n-1)an+1,由于n≥2,∴an+1-an=an-an-1
所以数列{an}是等差数列.(4分)
(2)由(1)知数列{an}是等差数列,且a1=1,a2=2,所以an=n
b1+3b2+32b3+…+3n-1bn=
n
3

∴当n=1时,b1=
1
3
,当n≥2时,b1+3b2+32b3+…+3n-2bn-1=
n-1
3

由⑤-⑥得:3n-1bn=
1
3
,∴bn=
1
3n
,而b1=
1
3
也符合,
故an=n,bn=
1
3n
,n∈N*
(7分)
(3)
an
bn
=n•3n
,∴Tn=1•3+2•32+…+n•3n⑦3Tn=1•32+2•33+…+n•3n+1
⑦-⑧并化简得:Tn=
3[(2n-1)3n+1]
4
(10分)
所以
4
3
Tn=(2n-1)3n+1
4
3
Tn-
(2n2+3n-2)•2n-1=(2n-1)[3n-(n+2)2n-1]+1
因为3n=(2+1)n=2n+Cn12n-1+…≥2n+n•2n-1=(n+2)2n-1
所以3n≥(n+2)2n-1对于n∈N*成立,
∴3n-(n+2)2n-1≥0,又由于2n-1>.0
所以
4
3
Tn-
(2n2+3n-2)•2n-1=(2n-1)[3n-(n+2)2n-1]+1>0
所以
4
3
Tn
(2n2+3n-2)•2n-1(13分)
点评:本题主要考查了数列的递推关系,以及错位相消法的运用,同时考查了利用作差比较法比较大小,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•黄冈模拟)已知:如图|
OA
|=|
OB
|=1,
OA
OB
的夹角为120°,
OC
OA
的夹角为30°,若
OC
OA
OB
(λ,μ∈R)则
λ
μ
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•黄冈模拟)已知{an}是正数组成的数列,a1=1,且点(
an
an+1)(n∈N*)
在函数y=x2+1的图象上.数列{bn}满足b1=0,bn+1=bn+3an(n∈N*).
(I)求数列{an},{bn}的通项公式;
(II)若cn=anbncosnπ(n∈N*),求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•黄冈模拟)在△ABC所在的平面内有一点P,如果
PA
+
PB
+
PC
=
AB
,那么△PAB的面积与△ABC的面积之比是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•黄冈模拟)在△ABC中,C=60°,AB=
3
,BC=
2
,那么A等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•黄冈模拟)分形几何学是美籍法国数学家伯努瓦••B•曼德尔布罗特(Benoit B.Mandelbrot) 在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路.下图按照的分形规律生长成一个树形图,则第10行的空心圆点的个数是(  )

查看答案和解析>>

同步练习册答案