精英家教网 > 高中数学 > 题目详情
11.数列{an}中,若Sn=n2an,a1=$\frac{1}{2}$,则an=$\frac{1}{n(n+1)}$.

分析 利用an+1=Sn+1-Sn,整理出an的递推式,进而用叠乘法求得an

解答 解:∵Sn=n2an,∴Sn+1=(n+1)2an+1
两式相减得:an+1=Sn+1-Sn=(n+1)2an+1-n2an
∴n2an=n(n+2)an+1,即nan=(n+2)an+1
∴$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{(n+1)-1}{(n+1)+1}$,即$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n-1}{n+1}$,
∴$\frac{{a}_{n}}{{a}_{n-1}}$•$\frac{{a}_{n-1}}{{a}_{n-2}}$•…•$\frac{{a}_{3}}{{a}_{2}}$•$\frac{{a}_{2}}{{a}_{1}}$=$\frac{n-1}{n+1}$•$\frac{n-2}{n}$•…•$\frac{1}{3}$•$\frac{1}{2}$,
∴an=$\frac{n-1}{n+1}$•$\frac{n-2}{n}$•…•$\frac{2}{4}$•$\frac{1}{3}$•$\frac{1}{2}$=$\frac{1}{n(n+1)}$,
故答案为:$\frac{1}{n(n+1)}$.

点评 本题主要考查了数列的递推式.数列的递推式是高考中常考的题型,涉及数列的通项公式,求和问题,数列与不等式的综合等问题,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点与抛物线C2:x=$\frac{1}{8}$y2的焦点重合,直线l为bx-ay+8=0,P为C2上一个动点,P到直线l的距离为d1,到C2准线的距离为d2,当d1+d2的最小值为5时,C1的方程为(  )
A.y2-$\frac{{x}^{2}}{3}$=1B.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{3}$-y2=1D.x2-$\frac{{y}^{2}}{3}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,∠A=90°,边AC=1,AB=2,过点A作AP⊥BC交BC于P,且$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,则λμ=$\frac{4}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.不等式|x+3|<4的解是(  )
A.{x|x<-7}B.{x|-7<x<1}C.{x|x>1}D.{x|x<-7或x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,已知椭圆C:$\frac{x^2}{2}$+y2=1,点B坐标为(0,-1),过点B的直线交椭圆C于y轴左侧另外一点A,且线段AB的中点E在直线y=x上.
(1)求直线AB的方程;
(2)若点P为椭圆C上异于A,B的任意一点,直线AP,BP分别交直线y=x于点M,N,直线BM交椭圆于另外一点Q.
①证明:|OM||ON|为定值;
②证明:A、Q、N三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.由观测的样本数据算得变量x与y满足线性回归方程$\widehaty=0.6x-0.5$,已知样本平均数$\overline x=5$,则样本平均数$\overline y$的值为(  )
A.0.5B.1.5C.2.5D.3.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.抛物线y2=4x的焦点为F,点P为抛物线上的动点,若A(-1,0),则$\frac{{|{PF}|}}{{|{PA}|}}$的最小值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.现定义max{a,b}=$\left\{\begin{array}{l}{a,a≥b}\\{b,a<b}\end{array}$,若y,z>0且M=max{$\frac{\sqrt{y}}{\sqrt{(1-x)z}}$,$\frac{\sqrt{z}}{\sqrt{(3+x)y}}$},则M的最小值是$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,在三棱柱ABC-A1B1C1中,底面是边长为1的正三角形,AA1⊥平面ABC,AA1=$\sqrt{2}$,则BC1与侧面ACC1A1所成的角的大小为$\frac{π}{6}$.

查看答案和解析>>

同步练习册答案