分析 直线l的参数方程为$\left\{\begin{array}{l}{x=2t}\\{y=1+4t}\end{array}\right.$(t为参数),化为普通方程:y=1+2x,圆C的极坐标方程为ρ=2$\sqrt{2}$sinθ,即ρ2=2$\sqrt{2}$ρsinθ,可得直角坐标方程:x2+$(y-\sqrt{2})^{2}$=2,求出圆心到直线l的距离d与r比较即可得出位置关系.
解答 解:直线l的参数方程为$\left\{\begin{array}{l}{x=2t}\\{y=1+4t}\end{array}\right.$(t为参数),化为普通方程:y=1+2x,即2x-y+1=0.
圆C的极坐标方程为ρ=2$\sqrt{2}$sinθ,∴ρ2=2$\sqrt{2}$ρsinθ,可得直角坐标方程:x2+y2=2$\sqrt{2}$y,配方为:x2+$(y-\sqrt{2})^{2}$=2,可得圆心C$(0,\sqrt{2})$,半径r=$\sqrt{2}$.
圆心C到直线的距离d=$\frac{|0-\sqrt{2}+1|}{\sqrt{5}}$$<\sqrt{2}$=r,
∴直线与圆相交.
故答案为:相交.
点评 本题考查了直线的参数方程、极坐标方程化为直角坐标方程、点到直线的距离公式、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 若l∥α,α∥β,则l∥β | B. | 若l⊥α,α∥β,则l⊥β | C. | 若l⊥α,α⊥β,则l∥β | D. | 若l∥α,α⊥β,则l⊥β |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{7}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{6}$ | B. | 2$\sqrt{5}$ | C. | 4 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com