精英家教网 > 高中数学 > 题目详情
4.三棱锥A-BCD,∠BAC=∠BCD=90°,∠DBC=30°,AB=AC=$\sqrt{6}$,AD=4,求二面角A-BC-D的度数.

分析 取BC中点O,BD中点E,连结AO、EO,推导出AO⊥BC,EO⊥BC,则∠AOE是二面角A-BC-D的平面角,由此能求出二面角A-BC-D的度数.

解答 解:取BC中点O,BD中点E,连结AO、EO,
∵三棱锥A-BCD,∠BAC=∠BCD=90°,∠DBC=30°,AB=AC=$\sqrt{6}$,AD=4,
∴AO⊥BC,EO⊥BC,
∴∠AOE是二面角A-BC-D的平面角,
由题意AO=$\frac{1}{2}BC$=$\frac{1}{2}\sqrt{6+6}$=$\sqrt{3}$,
CD=$\sqrt{\frac{B{C}^{2}}{3}}$=$\sqrt{\frac{12}{3}}$=2,BD=4,OE=$\frac{1}{2}CD$=1,
AE=$\sqrt{A{D}^{2}+D{E}^{2}-2AD•DE•cos∠ADB}$
=$\sqrt{16+4-2×4×2×\frac{16+16-6}{2×4×4}}$
=$\sqrt{7}$,
∴cos∠AOE=$\frac{A{O}^{2}+E{O}^{2}-A{E}^{2}}{2•AO•EO}$=$\frac{3+1-7}{2•\sqrt{3}•1}$=-$\frac{\sqrt{3}}{2}$.
∴二面角A-BC-D的度数为30°.

点评 本题考查二面角的大小的求法,是中档题,解题时要认真审题,注意余弦定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知ED⊥平面ABCD,O为正方形ABCD的中心,FB∥ED且AD=ED=2FB.
(1)求证:EO⊥平面FAC;
(2)求二面角F-EC-D的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.经过(3,4),且与圆x2+y2=25相切的直线的方程为3x+4y-25=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.编号分别为1至6的六名歌手参加大赛,组委会只设一名特等奖,观众甲、乙、丙、丁四人对特等奖获得者进行预测,甲:不是1号就是2号;乙:不可能是3号;丙:不可能是4,5,6号;丁:是4,5,6号中的一个.若四人中只有一人预测正确,则获特等奖的是3号.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知f(x)=$\left\{\begin{array}{l}{-\frac{2}{x},0<x≤1}\\{x+2,-4≤x≤0}\end{array}\right.$,则f(0)=2,f($\frac{1}{2}$)=-4,f[f($\frac{1}{2}$)]=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图在三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1=2,D是A1B1的中点,侧棱CC1⊥底面ABC
(1)求异面直线CB1与AC1所成角;
(2)求平面ADC1与平面ABC所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,AB是圆O的直径,点C在圆O上,延长BC到D使BC=CD,过C作圆O的切线交AD于E.若AB=6,ED=2,则BC=(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在平面直角坐标系中,直线l的参数方程为$\left\{{\begin{array}{l}{x=1+t}\\{y=t-3}\end{array}}\right.$(t为参数),在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为$ρ=\frac{2cosθ}{{{{sin}^2}θ}}$.
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)若直线l与曲线C相交于A、B两点,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=(2-a)x-2(1+lnx)+a,g(x)=$\frac{ex}{e^x}$.
(1)若a=1,求函数f(x)在(1,f(1))处的切线方程;
(2)若对任意给定的x0∈(0,e],在(0,e2]上方程f(x)=g(x0)总存在两个不等的实数根,求实数a的取值范围.

查看答案和解析>>

同步练习册答案