精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3
cos2x+2sinxcosx,x∈R.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[0,
π
4
]上的值域.
考点:两角和与差的正弦函数,三角函数的周期性及其求法
专题:三角函数的图像与性质
分析:(1)利用两角和公式和二倍角公式对函数解析式化简,利用周期公式求得函数的正周期.
(2)根据x的范围确定2x+
π
3
的范围,最后根据三角函数的性质求得函数的值域.
解答: 解:(1)f(x)=
3
cos2x+2sinxcosx=
3
cos2x+sin2x=2sin(2x+
π
3
),
T=
2
=π,
(2)∵x∈[0,
π
4
],
∴2x+
π
3
∈[
π
3
6
],
1
2
≤sin(2x+
π
3
)≤1
∴1≤f(x)≤2,即函数的值域为[1,2]
点评:本题主要考查了三角函数恒等变换的应用,三角函数图象与性质.考查了学位对三角函数基础知识的综合运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

复数z=-2+3i在复平面内对应的点位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}中,若a2=
1
2
,a5=
1
16
,则等比数列{an}的前100项的和为(  )
A、2-
1
299
B、2-
1
2100
C、2-
1
2101
D、2-
1
298

查看答案和解析>>

科目:高中数学 来源: 题型:

数列4,7,10,13…(3n+1)按照如下方式排列                     
4
13   10    7
16    19    22   25    28

第i行第j的记作ai-j例如 a3-3=22,a3-4=25  
则a20-4的值是(  )
A、1192B、1310
C、1201D、70

查看答案和解析>>

科目:高中数学 来源: 题型:

已知回归直线方程是:
y
=bx+a,其中
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-nx-2
,a=
.
y
-b
.
x
.假设学生在高中时数学成绩和物理成绩是线性相关的,若10个学生在高一下学期某次考试中数学成绩x(总分150分)和物理成绩y(总分100分)如下:
X 122 131 126 111 125 136 118 113 115 112
Y 87 94 92 87 90 96 83 84 79 84
(1)试求这次高一数学成绩和物理成绩间的线性回归方程(系数精确到0.001)
(2)若小红这次考试的物理成绩是93分,你估计她的数学成绩是多少分呢?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x不等式2x-a<0的解集为A,不等式x2-(3+a)x+2(1+a)≥0的解集为B.
(Ⅰ)当a=-4时,求A∪B;
(Ⅱ)若A∩B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知点P(0,
3
),曲线C的参数方程为
x=
5
cosφ
y=
15
sinφ
(φ为参数).以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ=
3
2cos(θ-
π
6
)

(1)判断点P与直线l的位置关系,说明理由;
(2)设直线l与曲线C的两个交点为A、B,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
1
2
cos2x+
3
2
sinxcosx+1,x∈R,求:
(1)函数y的最大值;
(2)函数y的周期;
(3)函数y的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(
x
-
2
x2
n(n∈N+)的展开式中第五项的二项式系数与第三项的二项式系数的比为14:3
(1)求展开式中各项系数的和
(2)求展开式中含x 
5
2
的项.

查看答案和解析>>

同步练习册答案