分析 (I)以D为坐标原点,以DA,DC,DF为坐标轴轴,求出$\overrightarrow{BF}$,$\overrightarrow{AC}$,$\overrightarrow{AP}$的坐标,通过计算数量积证明AC⊥BF,AP⊥BF,得出BF⊥平面APC;
(II)求出平面APC的法向量$\overrightarrow{n}$,令|cos<$\overrightarrow{n}$,$\overrightarrow{BF}$>|=$\frac{2\sqrt{2}}{3}$解出λ.
解答
(Ⅰ)证明:∵BE∥DF,BE⊥平面ABCD,∴DF⊥平面ABCD.
以D为坐标原点,以DA,DC,DF为坐标轴轴,建立空间直角坐标系,如图
则A(1,0,0),B(1,1,0),C(0,1,0),F(0,0,2),P(1,1,$\frac{1}{2}$ ).
∴$\overrightarrow{BF}=(-1,-1,2),\overrightarrow{AC}=(-1,1,0),\overrightarrow{AP}=(0,1,\frac{1}{2})$
∵$\overrightarrow{BF}•\overrightarrow{AC}=0,\overrightarrow{BF}•\overrightarrow{AP}=0$
∴AC⊥BF,AP⊥BF,
又AP?平面PAC,AC?平面PAC,AP∩AC=A,
∴BF⊥平面PAC.
(II)解:∵P(1,1,λ )(0≤λ≤2),∴$\overrightarrow{AP}$=(0,1,λ),
设平面PAC的法向量为$\overrightarrow n=(x,y,z)$,
则$\overrightarrow n•\overrightarrow{AC}=0,\overrightarrow n•\overrightarrow{AP}=0$,∴$\left\{\begin{array}{l}{-x+y=0}\\{y+λz=0}\end{array}\right.$,取z=1,则$\overrightarrow n=(-λ,-λ,1)$.
∴$\overrightarrow{n}•\overrightarrow{BF}$=2λ+2,|$\overrightarrow{n}$|=$\sqrt{2{λ}^{2}+1}$,|$\overrightarrow{BF}$|=$\sqrt{6}$.
∴cos<$\overrightarrow{n}$,$\overrightarrow{BF}$>=$\frac{\overrightarrow{n}•\overrightarrow{BF}}{|\overrightarrow{n}||\overrightarrow{BF}|}$=$\frac{2λ+2}{\sqrt{6}\sqrt{2{λ}^{2}+1}}$.
设直线BF 与平面PAC 所成角的为θ,则$tanθ=2\sqrt{2}$,∴$sinθ=\frac{{2\sqrt{2}}}{3}$.
∴$\frac{2λ+2}{\sqrt{6}\sqrt{2{λ}^{2}+1}}$=$\frac{2\sqrt{2}}{3}$,
解得λ=1或$λ=\frac{1}{5}$.
点评 本题考查了线面垂直的判定,空间向量的应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 40、24 | B. | 40、36 | C. | 24、36 | D. | 24、40 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 不存在x0∈R,2x0>0 | B. | 存在x0∈R,2x0≥0 | ||
| C. | 对任意的x∈R,2x≤0 | D. | 对任意的x∈R,2x>0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com