精英家教网 > 高中数学 > 题目详情
14.已知数列$\frac{1}{2}$,$\frac{1}{3}$+$\frac{2}{3}$,$\frac{1}{4}$+$\frac{2}{4}$+$\frac{3}{4}$,$\frac{1}{5}$+$\frac{2}{5}$+$\frac{3}{5}$+$\frac{4}{5}$,…则这个数列的第100项为(  )
A.49B.49.5C.50D.50.5

分析 通过数列的前几项可知通项an=$\frac{1+2+…+n}{n+1}$,进而化简、计算即得结论.

解答 解:通过数列的前几项可知通项an=$\frac{1+2+…+n}{n+1}$=$\frac{n(n+1)}{2(n+1)}$=$\frac{n}{2}$,
∴a100=$\frac{100}{2}$=50,
故选:C.

点评 本题考查数列的通项,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.对于数列{an},若?m,n∈N*(m≠n),都有$\frac{{a}_{m}-{a}_{n}}{m-n}$≥t(t为常数)成立,则称数列{an}具有性质P(t).
(1)若数列{an}的通项公式为an=2n,且具有性质P(t),则t的最大值为2;
(2)若数列{an}的通项公式为an=n2-$\frac{a}{n}$,且具有性质P(10),则实数a的取值范围是[36,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.有甲、乙两种商品,经营这两种商品所能获得的利润分别为p(单位:万元)和q(单位:万元),它们与投入资金M(单位:万元)的关系有近似满足下列公式,p=$\frac{1}{5}$M,Q=$\frac{3}{5}$$\sqrt{M}$.现有a(a>0)万元资金投入经营两种商品,为获得最大的利润,应对这两种商品分别投入资金多少万元?获得的最大利润是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=2x2-x的单调的增区间为(  )
A.$(-∞,\frac{1}{4}]$B.$[\frac{1}{4},+∞)$C.$(-∞,\frac{1}{2}]$D.$[\frac{1}{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=\frac{x^2}{{{x^2}+a}}$,且$f(1)=\frac{1}{2}$.
(1)求a的值,
(2)求$f(x)+f(\frac{1}{x})$的值,3)求$f(\frac{1}{2})+f(1)+f(2)$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线x-2y+2=0和直线3x-y+7=0的夹角是(  )
A.30°B.60°C.45°D.135°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求经过圆(x-1)2+(y-1)2=1外的一点P(2,3)向圆所引的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.曲线y=cosx与x轴以及直线x=$\frac{3π}{2}$,x=0所围图形的面积为(  )
A.4B.2C.$\frac{5}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数$f(x)=\frac{1}{x}+lg(x-1)$的定义域为(1,+∞).

查看答案和解析>>

同步练习册答案