(本小题14分)已知函数
.
(1)若
在
上的最大值为
,求实数
的值;
(2)若对任意
,都有
恒成立,求实数
的取值范围;
(3)在(1)的条件下,设
,对任意给定的正实数
,曲线
上是否存在两点
、
,使得
是以
(
为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在
轴上?请说明理由。
(1)0;(2)
. (3)见解析.
【解析】(1)求导,根据导数求最值即可。
(2)解本题关键是由
,得
.
,且等号不能同时取,
,
恒成立,即
.
1)由
,得
,
令
,得
或
.
列表如下:
|
|
|
|
0 |
|
|
|
|
|
|
|
0 |
|
0 |
|
|
|
|
|
极小值 |
|
极大值 |
|
∵
,
,
,
即最大值为
,
.………………………………………………4分
(2)由
,得
.
,且等号不能同时取,
,
恒成立,即
.
令
,求导得,
,
当
时,
,从而
,
在
上为增函数,
,
.………………………………8分
(3)由条件,
,
假设曲线
上存在两点
满足题意,则
只能在
轴两侧,
不妨设
,则
,且
.
![]()
是以
(
为坐标原点)为直角顶点的直角三角形,
,
,……………………………………10分
是否存在
等价于方程
在
且
时是否有解.
①若
时,方程
为
,化简得
,
此方程无解; ………………………………………………………………………11分
②若
时,
方程为
,即
,
设
,则
,
显然,当
时,
,即
在
上为增函数,
的值域为
,即
,
当
时,方程
总有解.
对任意给定的正实数
,曲线
上总存在两点
,使得
是以
(
为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在
轴上.………………14分
科目:高中数学 来源:2012-2013学年北京市高三第四次月考文科数学试卷(解析版) 题型:解答题
(本小题14分)
已知等比数列
满足
,且
是
,
的等差中项.
(Ⅰ)求数列
的通项公式;
(Ⅱ)若
,
,求使
成立的正整数
的最小值.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年四川省成都市高新区高三2月月考理科数学试卷(解析版 题型:解答题
(本小题14分)已知函数
,设
。
(Ⅰ)求F(x)的单调区间;
(Ⅱ)若以
图象上任意一点
为切点的切线的斜率
恒成立,求实数
的最小值。
(Ⅲ)是否存在实数
,使得函数
的图象与
的图象恰好有四个不同的交点?若存在,求出
的取值范围,若不存在,说名理由。
查看答案和解析>>
科目:高中数学 来源:2011-2012学年陕西省高三上学期月考理科数学 题型:解答题
(本小题14分)已知函数
的图像与函数
的图像关于点
对称
(1)求函数
的解析式;
(2)若
,
在区间
上的值不小于6,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年四川省高三2月月考数学理卷 题型:解答题
(本小题14分)
已知函数
的图像在[a,b]上连续不断,定义:
,
,其中
表示函数
在D上的最小值,
表示函数
在D上的最大值,若存在最小正整数k,使得
对任意的
成立,则称函数
为
上的“k阶收缩函数”
(1)若
,试写出
,
的表达式;
(2)已知函数
试判断
是否为[-1,4]上的“k阶收缩函数”,
如果是,求出对应的k,如果不是,请说明理由;
已知
,函数
是[0,b]上的2阶收缩函数,求b的取值范围
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com