精英家教网 > 高中数学 > 题目详情
设函数f(x)满足,f(2)=,则x>0时,f(x)( )
A.有极大值,无极小值
B.有极小值,无极大值
C.既有极大值又有极小值
D.既无极大值也无极小值
【答案】分析:先利用导数的运算法则,确定f(x)的解析式,再构造新函数,确定函数的单调性,即可求得结论.
解答:解:∵函数f(x)满足

∴x>0时,dx


令g(x)=,则
令g′(x)=0,则x=2,∴x∈(0,2)时,g′(x)<0,函数单调递减,x∈(2,+∞)时,g′(x)>0,函数单调递增
∴g(x)在x=2时取得最小值
∵f(2)=,∴g(2)==0
∴g(x)≥g(2)=0
≥0
即x>0时,f(x)单调递增
∴f(x)既无极大值也无极小值
故选D.
点评:本题考查导数知识的运用,考查函数的单调性与极值,考查学生分析解决问题的能力,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)满足f(-x)=f(x),且在[1,2]上递增,则f(x)在[-2,-1]上的最小值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)满足2f(x)-f(
1
x
)=4x-
2
x
+1
,数列{an}和{bn}满足下列条件:a1=1,an+1-2an=f(n),bn=an+1-an,cn=an+2n+3.
(1)求f(x)的解析式;
(2)证明{cn}成等比数列,并求{bn}的通项公式bn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•辽宁)设函数f(x)满足x2f′(x)+2xf(x)=
ex
x
,f(2)=
e2
8
,则x>0时,f(x)(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)满足f(ex)=x2-2ax+a2-1(a∈R),
(1)求函数y=f(x)的解析式;
(2)若f(x)在区间[1,e]上恰有一个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)满足f(x+y)=f(x)+f(y)+xy(x+y),又f'(0)=1,则函数f(x)的解析式为
f(x)=x+
1
3
x3
f(x)=x+
1
3
x3

查看答案和解析>>

同步练习册答案