(本小题12分)如图,在多面体ABCDEF中,底面ABCD是 平行四边形,AB=2EF,EF∥AB,,H为BC的中点.求证:FH∥平面EDB.![]()
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,底面为直角梯形ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点.(1)求证:PB⊥DM;(2)求CD与平面ADMN所成角的正弦值;(3)在棱PD上是否存在点E,且PE∶ED=λ,使得二面角C-AN-E的平面角为60o.若存在求出λ值,若不存在,请说明理由。![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG为△SAB上的高,D、E、F分别是AC、BC、SC的中点,试判断SG与平面DEF的位置关系,并给予证明.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分)
如图,已知平面QBC与直线PA均垂直于
所在平面,且PA=AB=AC.![]()
(Ⅰ)求证:PA∥平面QBC;
(Ⅱ)若
,求二面角Q-PB-A的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题12分)如图,
平面
,点
在
上,
∥
,四边形
为直角梯形,
,
,![]()
![]()
(1)求证:
平面
;
(2)求二面角
的余弦值;
(3)直线
上是否存在点
,使
∥平面
,若存在,求出点
;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分16分)如图:AD=2,AB=4的长方形
所在平面与正
所在平面互相垂直,
分别为
的中点.![]()
(1)求四棱锥
-
的体积;
(2)求证:
平面
;
(3)试问:在线段
上是否存在一点
,使得平面
平面
?若存在,试指出点
的位置,并证明你的结论;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com