精英家教网 > 高中数学 > 题目详情

(本小题12分)如图,在多面体ABCDEF中,底面ABCD是 平行四边形,AB=2EFEFAB,,HBC的中点.求证:FH∥平面EDB.

证明四边形EFHG为平行四边形,可以得到FHEG再由线面平行的判定定理可证

解析试题分析:设ACBD交于点G,联结EGGH.
GAC中点,∵HBC中点,∴GH AB,                                  ……4分又∵EF AB,∴四边形EFHG为平行四边形.
FHEG.                                                                     ……8分
EG?平面EDB,而FH?平面EDB
FH∥平面EDB.                                                              ……12分

考点:本小题主要考查空间直线与平面平行的证明.
点评:证明空间中直线、平面间的位置关系,要正确运用判定定理和性质定理,而且定理中要求的条件要一一列举出来,缺一不可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分14分)
如图,在底面是直角梯形的四棱锥S-ABCD中, 


(1)求四棱锥S-ABCD的体积;
(2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面为直角梯形ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点.(1)求证:PB⊥DM;(2)求CD与平面ADMN所成角的正弦值;(3)在棱PD上是否存在点E,且PE∶ED=λ,使得二面角C-AN-E的平面角为60o.若存在求出λ值,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG为△SAB上的高,D、E、F分别是AC、BC、SC的中点,试判断SG与平面DEF的位置关系,并给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
如图,已知平面QBC与直线PA均垂直于所在平面,且PA=AB=AC.

(Ⅰ)求证:PA∥平面QBC;
(Ⅱ)若,求二面角Q-PB-A的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)如图,平面,点上,,四边形为直角梯形,,

(1)求证:平面
(2)求二面角的余弦值;
(3)直线上是否存在点,使∥平面,若存在,求出点;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分16分)如图:AD=2,AB=4的长方形所在平面与正所在平面互相垂直,分别为的中点.

(1)求四棱锥-的体积;
(2)求证:平面
(3)试问:在线段上是否存在一点,使得平面平面?若存在,试指出点的位置,并证明你的结论;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱(侧棱垂直于底面的棱柱),底面中    ,棱分别为的中点.

(1)求 >的值;
(2)求证:
(3)求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)
已知是四边形所在平面外一点,四边形的菱形,侧面
为正三角形,且平面平面.
(1)若边的中点,求证:平面.
(2)求证:.

查看答案和解析>>

同步练习册答案