精英家教网 > 高中数学 > 题目详情

已知数列{an}满足a1=2,an+1=an.
(1)求数列{an}的通项公式;
(2)设bn=nan·2n,求数列{bn}的前n项和Sn

(1) an.(2) Sn=n·2n+1

解析试题分析:(1)由已知得an+1-an=-,又a1=2,
∴当n≥2时,an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=
a1=2也符合上式,∴对一切n∈N*,an.            6分
(2)由(1)知:bn=nan·2n=(n+1)·2n
∴Sn=2×2+3×22+4×23+…+(n+1)×2n,①
2Sn=2×22+3×23+…+n×2n+(n+1)×2n+1,②
∴①-②得-Sn=2×2+22+23+…+2n-(n+1)×2n+1=2+-(n+1)×2n+1
=2+2n+1-2-(n+1)·2n+1=-n·2n+1,∴Sn=n·2n+1.              12分
考点:本题考查了数列的通项公式及前n项和
点评:数列解答题考查的的热点为求数列的通项公式、等差(比)数列的性质及数列的求和问题.因此在复习中,要特别注意加强对由递推公式求通项公式、求有规律的非等差(比)数列的前n项和等的专项训练.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列的前项和为,且
(Ⅰ)求数列的通项公式;
(Ⅱ)已知数列的通项公式,记,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足,则(1)当时,求数列的前项和;(2)当时,证明数列是等比数列。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列中,.
(1)设,求证数列是等比数列;
(2)求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列,首项a 1 =3且2a n+1="S"  n?S n-1 (n≥2).
(1)求证:{}是等差数列,并求公差;
(2)求{a n }的通项公式;
(3)数列{an }中是否存在自然数k0,使得当自然数k≥k 0时使不等式a k>a k+1对任意大于等于k的自然数都成立,若存在求出最小的k值,否则请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的前项和为,且满足
(1)求数列的通项公式;
(2)在数列的每两项之间都按照如下规则插入一些数后,构成新数列,在两项之间插入个数,使这个数构成等差数列,求的值;
(3)对于(2)中的数列,若,并求(用表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列{an},Sn为它的前n项的和,已知a1=-2,an+1=Sn,当n≥2时,求:an和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
在数列中,为其前项和,满足
(1)若,求数列的通项公式;
(2)若数列为公比不为1的等比数列,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列{an}的前n项和为Sn=2n2,{bn}为等比数列,且a1b1b2(a2a1)=b1.
(1)求数列{an}和{bn}的通项公式;( 6分)
(2)设cn,求数列{cn}的前n项和Tn.

查看答案和解析>>

同步练习册答案