分析 (1)将点的坐标设出,据已知求出点的横坐标、纵坐标满足的约束条件,画出可行域,
(2)①观察(1)的可行域②z为目标函数纵截距③画直线y-ax=0,平移直线观察最值.
解答 解:(1)作出满足约束条件的可行域,
如图所示:![]()
(2)由(1)可知,
当直线z=y-ax的斜率-1<a<0时,
直线z=y-ax平移到点A(-3,7)时,
目标函数z=y-ax取得最大值7+3a;
当直线z=y-ax平移到点B(2,-1)时,
目标函数z=y-ax取得最小值-2a-1;
综上所述:最大值为7+3a,最小值为:-2a-1.
点评 本题考查不等式中的线性规划知识,画出平面区域与正确理解目标函数z=y-ax的几何意义是解答好本题的关键
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | -2 | C. | -1 | D. | 不能确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com