精英家教网 > 高中数学 > 题目详情
9.已知Z1=3+5i,Z2=3-5i,则Z1+Z2=(  )
A.6B.10iC.6iD.-10i

分析 直接把Z1=3+5i,Z2=3-5i代入Z1+Z2计算得答案.

解答 解:Z1=3+5i,Z2=3-5i,
则Z1+Z2=3+5i+3-5i=6.
故选:A.

点评 本题考查了复数代数形式的乘除运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知抛物线y2=px(p>0)与直线y=-x-1相切.
(1)求抛物线标准方程,及其准线方程;
(2)若P、Q是抛物线上相异的两点,且P、Q的中点在直线x=1上,试证:线段PQ的垂直平分线恒过定点T.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数y=$\frac{|{x}^{2}-1|}{x-1}$的图象与函数y=kx-1的图象有且只有一个交点,则实数k的取值范围是{k|k≥1或k<-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知△ABC,若点M及实数λ满足:$\overrightarrow{MA}$+$\overrightarrow{MB}$+$\overrightarrow{MC}$=$\overrightarrow{0}$且$\overrightarrow{AB}$+$\overrightarrow{AC}$=λ$\overrightarrow{AM}$,则λ的值为(  )
A.-2B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)是定义域为R的偶函数,且f(x+2)=f(x),若f(x)在[-1,0]上是减函数,记a=f(log0.52),b=f(log24),c=f(20.5),则(  )
A.a>b>cB.b>c>aC.a>c>bD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=-2x2+3x(0<x≤2)的值域是(  )
A.$[{-2,\frac{9}{8}}]$B.$({-∞,\frac{9}{8}}]$C.$({0,\frac{9}{8}}]$D.$[{\frac{9}{8},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知θ∈(0,π),则y=$\frac{1}{{{{sin}^2}θ}}+\frac{9}{{{{cos}^2}θ}}$的最小值为(  )
A.6B.10C.12D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(Ⅰ)对矩阵A=$({\begin{array}{l}3&1\\ 4&2\end{array}})$,求其逆矩阵A-1
(Ⅱ) 利用矩阵知识解二元一次方程组$\left\{\begin{array}{l}3x+y=2\\ 4x+2y=3\end{array}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知曲线C1的极坐标方程是ρ+4cosθ+$\frac{5}{2ρ}$=0.以极点O为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,在平面直角坐标系xOy中,曲线C2:x2+$\frac{{y}^{2}}{9}$=1
(Ⅰ)写出C1的直角坐标方程和C2的参数方程;
(Ⅱ)设M,N分别为C1,C2的任意一点,求|MN|的最大值.

查看答案和解析>>

同步练习册答案