精英家教网 > 高中数学 > 题目详情
2.已知曲线C1的极坐标方程是ρ+4cosθ+$\frac{5}{2ρ}$=0.以极点O为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,在平面直角坐标系xOy中,曲线C2:x2+$\frac{{y}^{2}}{9}$=1
(Ⅰ)写出C1的直角坐标方程和C2的参数方程;
(Ⅱ)设M,N分别为C1,C2的任意一点,求|MN|的最大值.

分析 (I)由曲线C1的极坐标方程是ρ+4cosθ+$\frac{5}{2ρ}$=0,化为2ρ2+8ρcosθ+5=0,利用ρ2=x2+y2,x=ρcosθ可得直角坐标方程.由曲线C2:x2+$\frac{{y}^{2}}{9}$=1,利用cos2α+sin2α=1可得参数方程.
(II)由(I)可设:N(cosα,3sinα),圆心P(-2,0),可得|NP|=$\sqrt{(cosα+2)^{2}+(3sinα)^{2}}$=$\sqrt{-8(cosα-\frac{1}{4})^{2}+\frac{27}{2}}$,利用二次函数的单调性、三角函数求值即可得出.

解答 解:(I)由曲线C1的极坐标方程是ρ+4cosθ+$\frac{5}{2ρ}$=0,化为2ρ2+8ρcosθ+5=0,
可得直角坐标方程:2(x2+y2)+8x+5=0,配方化为:(x+2)2+y2=$\frac{3}{2}$.
由曲线C2:x2+$\frac{{y}^{2}}{9}$=1,可得参数方程:$\left\{\begin{array}{l}{x=cosα}\\{y=3sinα}\end{array}\right.$(α为参数).
(II)由(I)可设:N(cosα,3sinα),圆心P(-2,0),
∴|NP|=$\sqrt{(cosα+2)^{2}+(3sinα)^{2}}$=$\sqrt{co{s}^{2}α+4cosα+4+9(1-co{s}^{2}α)}$=$\sqrt{-8(cosα-\frac{1}{4})^{2}+\frac{27}{2}}$,
当cos$α=\frac{1}{4}$时,|NP|取得最大值$\sqrt{\frac{27}{2}}$=$\frac{3\sqrt{6}}{2}$.
∴|MN|的最大值=$\frac{3\sqrt{6}}{2}$+$\frac{\sqrt{6}}{2}$=2$\sqrt{6}$.

点评 本题考查了极坐标化为直角坐标方程、椭圆的参数方程化为普通方程、两点之间的距离公式、三角函数化简求值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知Z1=3+5i,Z2=3-5i,则Z1+Z2=(  )
A.6B.10iC.6iD.-10i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数y=f(x)在区间[a,b]的图象如图所示,则其导函数y=f′(x)在该区间(  )
A.先递减再递增B.先递增再递减
C.先递增再递减最后又递增D.先递减再递增最后又递减

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{1}{3}$ax3-$\frac{1}{2}$x2+x在(-∞,+∞)上是单调函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,DE是⊙O的直径,过⊙O上的点C作直线AB,交ED的延长线于点B,且OA=OB,CA=CB,连结EC,CD.
(1)求证:直线AB是⊙O的切线;
(2)若tan∠CED=$\frac{1}{2}$,⊙O的半径为3,求OA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,已知在四棱锥,P一ABCD中,平面PAB⊥平面ABCD,PA⊥PB,且PA=PB=$\sqrt{2}$,CD∥AB,AD⊥AB,AD=CD=1
(1)试在线段AP上找一点M,使DM∥平面PBC并说明理;
(2)求二面角M-DC-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,直线PO与直径为4的圆O交于B,C两点,且PC=2,直线PA切圆O于点A
(Ⅰ)证明:AB=AP;
(Ⅱ)若AM⊥PB,延长MC交AP于点N,求证:MN⊥PA.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.正方形ABCD-A1B1C1D1中,二面角B-A1C-A的大小为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,PA是⊙O的切线,切点为A,PB,PC是⊙O的割线,它们与⊙O分别交于B,D和C,E,延长CD交PA于M,∠MPC=∠MDP.
(Ⅰ)求证:AP∥BE;
(Ⅱ)求证:M是AP的中点.

查看答案和解析>>

同步练习册答案