精英家教网 > 高中数学 > 题目详情
2.已知动圆过定点R(0,2),且在x轴上截得的线段MN的长为4,直线l:y=kx+t(t>0)交y轴于点Q.
(1)求动圆圆心的轨迹E的方程;
(2)直线l与轨迹E交于A、B两点,分别以A、B为切点作轨迹E的切线交于点P,若tan∠APB=$\frac{|\overrightarrow{PQ}|•|\overrightarrow{AB}|}{\overrightarrow{PA}•\overrightarrow{PB}}$,试判断点Q是否为定点,若是,请求出点Q的坐标;若不是,请说明理由.

分析 (1)根据动圆过定点以及直线和x轴相交的弦长理由参数消元法即可求动圆圆心的轨迹E的方程;
(2)设A(x1,y1),B(x2,y2),x1≠x2,P(x0,y0),利用设而不求的思想,结合曲线在A,B处的切线方程,求出交点坐标借助向量数量积的关系进行转化求解即可.

解答 解:(1)设动圆圆心的坐标为(x,y),半径r,(r>0),
∵动圆过定点R(0,2),且在x轴上截得线段MN的长为4,
∴$\left\{\begin{array}{l}{{x}^{2}+(y-2)^{2}={r}^{2}}\\{{y}^{2}+4={r}^{2}}\end{array}\right.$,消去r得x2=4y,
故所求轨迹E的方程为x2=4y;
(2)不妨设A(x1,y1),B(x2,y2),x1≠x2
P(x0,y0),由题知Q(0,1),
由$\left\{\begin{array}{l}{y=kx+t}\\{{x}^{2}=4y}\end{array}\right.$,消去y得x2-4kx-4t=0,
∴x1+x2=4k,x1x2=-4t,轨迹E在A点处的切线方程为l1:y-y1=$\frac{{x}_{1}}{2}$(x-x1),即y=$\frac{{x}_{1}}{2}$x-$\frac{{{x}_{1}}^{2}}{4}$,
同理,轨迹E在B处的切线方程为l1:y=$\frac{{x}_{2}}{2}$x-$\frac{{{x}_{2}}^{2}}{4}$,
联立l1,l2:的方程解得交点坐标P($\frac{{x}_{1}+{x}_{2}}{2}$,$\frac{{x}_{1}{x}_{2}}{4}$),即P(2k,-t),
由tan∠APB=$\frac{|\overrightarrow{PQ}|•|\overrightarrow{AB}|}{\overrightarrow{PA}•\overrightarrow{PB}}$得到|$\overrightarrow{PA}$|•|$\overrightarrow{PB}$|sin∠APB=|$\overrightarrow{PQ}$|•|$\overrightarrow{AB}$|=2S△APB
得$\overrightarrow{PQ}$⊥$\overrightarrow{AB}$,即$\overrightarrow{PQ}$•$\overrightarrow{AB}$=0,
$\overrightarrow{PQ}$=(-2k,2t),$\overrightarrow{AB}$=(x2-x1,$\frac{{{x}_{2}}^{2}-{{x}_{1}}^{2}}{4}$),
∴-2k(x2-x1)+2t•$\frac{{{x}_{2}}^{2}-{{x}_{1}}^{2}}{4}$=0,
即2k(x2-x1)(t-1)=0,
则2k(t-1)=0,
则t=1,
故Q是定点,坐标为(0,1).

点评 本题主要考查与圆有关的轨迹问题,涉及直线和抛物线的相交的位置关系,利用设而不求的数学思想是解决本题的关键.综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|mx-2|-|mx+1|(m∈R).
(1)当m=1时,解不等式f(x)≤1;
(2)若对任意实数m,f(x)的最大值恒为n,求证:对任意正数a,b,c,当a+b+c=n时,$\sqrt{a}$+$\sqrt{b}$+$\sqrt{c}$≤n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶,经过t小时与轮船相遇.
(Ⅰ)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(Ⅱ)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知(1-2x)10=a0+a1x+a2x2+…+a10x10,则a1+2a2+3a3+…+10a10=(  )
A.-20B.-15C.15D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=xlnx,g(x)=$\frac{x}{{e}^{x}}$.
(1)记F(x)=f(x)-g(x),证明:F(x)在(1,2)区间内有且仅有唯一实根;
(2)证明:对?x∈(0,+∞),xlnx>$\frac{x}{{e}^{x}}$-$\frac{2}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知一个四棱锥的高为3,其底面用斜二测画法所画出的水平放置的直观图是一个边长为2的正方形,则此四棱锥的体积为(  )
A.4B.$6\sqrt{2}$C.12D.$8\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=2cos($\frac{π}{4}$x)+4,则f(2)+f(4)+f(6)+…+f(20)=38.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=mx-(m+2)lnx-$\frac{2}{x}$,g(x)=x2+mx+1,m∈R.
(1)当m<0时,
①求f(x)的单调区间;
②若存在x1,x2∈[1,2],使得f(x1)-g(x2)≥1成立,求m的取值范围;
(2)设h(x)=$\frac{lnx+1}{{e}^{x}}$的导函数h′(x),当m=1时,求证[g(x)-1]h′(x)<1+e-2(其中e是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.阅读如图所示的程序框图,运行相应的程序,则输出的k的值是(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案