精英家教网 > 高中数学 > 题目详情
19.如图1,已知矩形ABCD中,点E是边BC上的点,DE与AC相交于点H,且CE=1,AB=$\sqrt{3}$,BC=3,现将△ACD沿AC折起,如图2,点D的位置记为D′,此时ED′=$\frac{\sqrt{10}}{2}$
(1)求证:D′H⊥AE
(2)求三棱锥B-AED′的体积.

分析 (1)推导出AC⊥DE,DH′⊥AC,D′H⊥HE,从而D′H⊥平面ABC,由此能证明D′H⊥AE.
(2)由D′H⊥平面ABC,${V}_{B-AE{D}^{'}}$=${V}_{D-AB{E}^{'}}$,能求出三棱锥B-AED′的体.

解答 证明:(1)在矩形ABCD中,
∵CE=1,AB=$\sqrt{3}$,BC=3,
∴tan$∠EDC=\frac{CE}{CD}=\frac{\sqrt{3}}{3}$,tan$∠ACB=\frac{AB}{BC}=\frac{\sqrt{3}}{3}$,
∴∠EDC=∠ACB,
∵$∠DCA+∠ACB=\frac{π}{2}$,∴$∠EDC+∠DCA=\frac{π}{2}$,
∴$∠DHC=\frac{π}{2}$,∴AC⊥DE,∴DH′⊥AC,…(4分)
又△CHE∽△AHD,且CE:AD=1:3,
∴${D}^{'}H=DH=\frac{3}{4}DE=\frac{3}{2}$,HE=$\frac{1}{4}DE=\frac{1}{2}$,
∵ED′=$\frac{\sqrt{10}}{2}$,∴D′H2+HE2=D′E2,∴D′H⊥HE,
∵直线AC与HE是平面ABC内的两条相交直线,
∴D′H⊥平面ABC,又AE?平面ABC,
∴D′H⊥AE.…(8分)
(2)由(1)知D′H⊥平面ABC,
∴三棱锥B-AED′的体积:
${V}_{B-AE{D}^{'}}$=${V}_{D-AB{E}^{'}}$=$\frac{1}{3}{S}_{△AB{E}^{'}}•{D}^{'}H$=$\frac{1}{3}×\frac{1}{2}×2×\sqrt{3}×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$.…(12分)

点评 本题考查线线垂直的证明,考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.实系数一元二次方程x2+ax+2b=0有两个根,一个根在区间(0,1)内,另一个根在区间(1,2)内,求:
(1)(a-1)2+(b-2)2的值域.
(2)$\frac{a+b-3}{a-1}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若集合A={x|-1≤2x+1≤3},B={y|y=x2-2x(x∈(2,3]},求A∩B,(∁RA)∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\left\{\begin{array}{l}{x+4,-3≤x≤0}\\{{x}^{2}-2x,0<x≤4}\\{-x+2,4<x≤5}\end{array}\right.$,则f(f(f(5)))=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知a,b,c分别是△ABC的内角A,B,C的对边,向量$\overrightarrow{m}$=(tanA+tanB,-tanB),$\overrightarrow{n}$=(b,2c),且$\overrightarrow{m}⊥\overrightarrow{n}$
(1)求角A的大小;
(2)若$a=\sqrt{13}$,△ABC的面积为$3\sqrt{3}$,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.方程4x+2x=a2+a有正根,则实数a的取值范围是(-∞,-2)∪(1,+∞);若函数f(x)=ln(x2+ax+1)的值域为R,则实数a的取值范围是(-∞,-2]∪[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若不等式组 $\left\{\begin{array}{l}x-y+1≥0\\ y+\frac{1}{2}≥0\\ x+y-1≤0\end{array}\right.$表示的区域为Ω,不等式 ${({x-\frac{1}{2}})^2}+{y^2}≤\frac{1}{4}$表示的区域为τ,向Ω区域均匀随机撒360颗芝麻,则落在区域τ中芝麻数约为(  )
A.114B.10C.150D.50

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等差数列{an}中,a1=1,a7=-11,
(1)求数列{an}的通项公式;
(2)若数列{an}的前k项和Sk=-80,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下面的伪代码输出的结果S为(  )
I←1
While I<8
I←I+2
S←2I+3
End while
Print S.
A.17B.19C.21D.23

查看答案和解析>>

同步练习册答案