分析 (1)推导出AC⊥DE,DH′⊥AC,D′H⊥HE,从而D′H⊥平面ABC,由此能证明D′H⊥AE.
(2)由D′H⊥平面ABC,${V}_{B-AE{D}^{'}}$=${V}_{D-AB{E}^{'}}$,能求出三棱锥B-AED′的体.
解答 证明:(1)在矩形ABCD中,
∵CE=1,AB=$\sqrt{3}$,BC=3,
∴tan$∠EDC=\frac{CE}{CD}=\frac{\sqrt{3}}{3}$,tan$∠ACB=\frac{AB}{BC}=\frac{\sqrt{3}}{3}$,
∴∠EDC=∠ACB,
∵$∠DCA+∠ACB=\frac{π}{2}$,∴$∠EDC+∠DCA=\frac{π}{2}$,
∴$∠DHC=\frac{π}{2}$,∴AC⊥DE,∴DH′⊥AC,…(4分)
又△CHE∽△AHD,且CE:AD=1:3,
∴${D}^{'}H=DH=\frac{3}{4}DE=\frac{3}{2}$,HE=$\frac{1}{4}DE=\frac{1}{2}$,
∵ED′=$\frac{\sqrt{10}}{2}$,∴D′H2+HE2=D′E2,∴D′H⊥HE,
∵直线AC与HE是平面ABC内的两条相交直线,
∴D′H⊥平面ABC,又AE?平面ABC,
∴D′H⊥AE.…(8分)
(2)由(1)知D′H⊥平面ABC,
∴三棱锥B-AED′的体积:
${V}_{B-AE{D}^{'}}$=${V}_{D-AB{E}^{'}}$=$\frac{1}{3}{S}_{△AB{E}^{'}}•{D}^{'}H$=$\frac{1}{3}×\frac{1}{2}×2×\sqrt{3}×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$.…(12分)
点评 本题考查线线垂直的证明,考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 114 | B. | 10 | C. | 150 | D. | 50 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 17 | B. | 19 | C. | 21 | D. | 23 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com