精英家教网 > 高中数学 > 题目详情
15.已知三棱锥S-ABC,△ABC是直角三角形,其斜边AB=8,SC⊥平面ABC,SC=6,则三棱锥的外接球的表面积为(  )
A.64πB.68πC.72πD.100π

分析 直角三角形ABC的外接圆的圆心为AB中点D,过D作面ABC的垂线,球心O在该垂线上,
过O作球的弦SC的垂线,垂足为E,则E为SC中点,球半径R=OS=$\sqrt{O{E}^{2}+S{E}^{2}}=\sqrt{C{D}^{2}+S{E}^{2}}$即可求出半径.

解答 解:如图所示,直角三角形ABC的外接圆的圆心为AB中点D,
过D作面ABC的垂线,球心O在该垂线上,
过O作球的弦SC的垂线,垂足为E,则E为SC中点,
球半径R=OS=$\sqrt{O{E}^{2}+S{E}^{2}}=\sqrt{C{D}^{2}+S{E}^{2}}$
∵$CD=\frac{1}{2}AB=4$,SE=3,∴R=5
棱锥的外接球的表面积为4πR2=100π,
故选:D

点评 本题考查了球的内接三棱锥,解题的关键是找到数量关系,求出球半径,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知tanx=2,则$\frac{6sin2x+2cos2x}{cos2x-3sin2x}$的值为-$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2+$\sqrt{2}$(m-1)x+$\frac{m}{4}$,现有一组数据(该组数据数量庞大),从中随机抽取10个,绘制所得的茎叶图如图所示,且茎叶图中的数据的平均数为2.
(1)现从茎叶图中的数据中任取4个数据分别替换m的值,求至少有2个数据使得函数f(x)没有零点的概率;
(2)以频率估计概率,若从该组数据中随机抽取4个数据分别替换m的值,记使得函数f(x)没有零点的个数为?,求?的分布列以及数学期望、方差.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算:(1)(1+2i)2
(2)($\frac{1+i}{1-i}$)6+$\frac{\sqrt{2}+\sqrt{3}i}{\sqrt{3}-\sqrt{2}i}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.一个几何体的三视图如图所示,则该几何体的体积为4$\sqrt{3}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.《九章算术》是我国古代内容极为丰富的数学名著,书中提到了一种名为“刍甍”的五面体(如图):面ABCD为矩形,棱EF∥AB.若此几何体中,AB=4,EF=2,△ADE和△BCF都是边长为2的等边三角形,则此几何体的表面积为(  )
A.$8\sqrt{3}$B.$8+8\sqrt{3}$C.$6\sqrt{2}+2\sqrt{3}$D.$8+6\sqrt{2}+2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某校高一、高二、高三年级学生人数分别是400、320、280,现采用分层抽样的方法抽取50人,参加学校举行的社会主义核心价值观知识竞赛,则样本中高二年级的人数是(  )
A.20B.16C.15D.14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某校14岁女生的平均身高为154.4cm,标准差是5.1cm,如果身高服从正态分布,那么在该校200个14岁的女生中,身高在164.6cm以上的约有(  )
A.5人B.6人C.7人D.8人

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$为两平面向量,且|$\overrightarrow{{e}_{1}}$|=|$\overrightarrow{{e}_{2}}$|=1,<$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$>=60°.
(1)若$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow{BC}$=2$\overrightarrow{{e}_{1}}$-6$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=3$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,求证:A,B,D三点共线;
(2)若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+2λ$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=λ$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,且$\overrightarrow{a}$⊥$\overrightarrow{b}$,求实数λ的值.

查看答案和解析>>

同步练习册答案