ÒÑÖªµãP1£¨a1£¬b1£©£¬P2£¨a2£¬b2£©£¬¡­£¬Pn£¨an£¬bn£©£¨nΪÕýÕûÊý£©¶¼ÔÚº¯Êýy=(
12
)x
ͼÏóÉÏ£®
£¨¢ñ£©ÈôÊýÁÐ{an}ÊǵȲîÊýÁУ¬Ö¤Ã÷£ºÊýÁÐ{bn}ÊǵȱÈÊýÁУ»
£¨¢ò£©Éèan=n£¨nΪÕýÕûÊý£©£¬¹ýµãPn£¬Pn+1µÄÖ±ÏßÓëÁ½×ø±êÖáËùΧ³ÉµÄÈý½ÇÐÎÃæ»ýΪcn£¬ÊÔÇó×îСµÄʵÊýt£¬Ê¹cn¡Üt¶ÔÒ»ÇÐÕýÕûÊýnºã³ÉÁ¢£»
£¨¢ó£©¶Ô£¨¢ò£©ÖеÄÊýÁÐ{an}£¬¶Ôÿ¸öÕýÕûÊýk£¬ÔÚakÓëak+1Ö®¼ä²åÈë3k-1¸ö3£¬µÃµ½Ò»¸öеÄÊýÁÐ{dn}£¬ÉèSnÊÇÊýÁÐ{dn}µÄÇ°nÏîºÍ£¬ÊÔ̽¾¿2008ÊÇ·ñÊýÁÐ{Sn}ÖеÄijһÏд³öÄã̽¾¿µÃµ½µÄ½áÂÛ²¢¸ø³öÖ¤Ã÷£®
·ÖÎö£º£¨¢ñ£©ÈôÉèÊýÁÐ{an}µÄ¹«²îΪd£¬Ôòbn=(
1
2
)an
£¬
bn+1
bn
=(
1
2
)an+1-an=(
1
2
)d
Ϊ³£Êý£¬¼´Ö¤ÊýÁÐ{bn}ÊǵȱÈÊýÁУ®
£¨¢ò£©Èôan=n£¬Ôòbn=(
1
2
)n
£¬µÃµãPn(n£¬(
1
2
)n)
£¬Pn+1(n+1£¬(
1
2
)n+1)
£¬´Ó¶øµÃбÂÊkPnPn+1£¬¼´µÃÖ±ÏßPnPn+1µÄ·½³Ì£¬ÇóµÃËüÓëxÖᣬyÖáµÄ½»µãAn£¬Bn£¬µÃÊýÁÐ{cn}µÄͨÏʽ£¬{cn}µÄÔö¼õÐÔ£¬Öªcn¡Üc1=
9
8
£¬¼´µÃ×îСµÄʵÊýtµÄÖµ£®
£¨¢ó£©ÓÉan=n£¬ÖªÊýÁÐ{dn}ÖУ¬´ÓµÚÒ»Ïîa1¿ªÊ¼µ½akΪֹµÄËùÓÐÏîµÄºÍÊÇ£¨1+2+¡­+k£©+£¨31+32+¡­+3k-1£©£¬k=7ʱ£¬ºÍÊÇ28+
37-3
2
=1120£¼2008
£¬k=8ʱ£¬ºÍÊÇ36+
38-3
2
=3315£¾2008
£»2008-1120=888ÊÇ3µÄ±¶Êý£¬ËùÒÔ´æÔÚ×ÔÈ»Êým£¬Ê¹Sm=2008£»Çó³ömµÄÖµ¼´¿É£®
½â´ð£º½â£º£¨¢ñ£©ÉèÊýÁÐ{an}µÄ¹«²îΪd£¬ÓÉÒÑÖªbn=(
1
2
)an
£¬
ËùÒÔ£¬
bn+1
bn
=(
1
2
)an+1-an=(
1
2
)d
£¨³£Êý£©£¬
ËùÒÔ£¬ÊýÁÐ{bn}ÊǵȱÈÊýÁУ®
£¨¢ò£©Èôan=n£¬Ôòbn=(
1
2
)n
£¬
¡àPn(n£¬(
1
2
)n)
£¬Pn+1(n+1£¬(
1
2
)n+1)
£¬kPnPn+1=
(
1
2
)
n+1
-(
1
2
)
n
(n+1)-n
=-(
1
2
)n+1
£¬
Ö±ÏßPnPn+1µÄ·½³ÌΪy-(
1
2
)n=-(
1
2
)n+1(x-n)
£¬
ËüÓëxÖᣬyÖá·Ö±ð½»ÓÚµãAn£¨n+2£¬0£©£¬Bn(0£¬
n+2
2n+1
)
£¬
¡àcn=
1
2
•|OAn|•|OBn|=
(n+2)2
2n+2
£¬
cn-cn+1=
(n+2)2
2n+2
-
(n+3)2
2n+3
=
n2+2n-1
2n+3
£¾0
£¬
¡àÊýÁÐ{cn}ËænÔö´ó¶ø¼õС£¬
¡àcn¡Üc1=
9
8
£¬¼´×îСµÄʵÊýtµÄֵΪ
9
8
£®
£¨¢ó£©¡ßan=n£¬¡àÊýÁÐ{dn}ÖУ¬´ÓµÚÒ»Ïîa1¿ªÊ¼µ½akΪֹ£¨º¬akÏµÄËùÓÐÏîµÄºÍÊÇ£º
£¨1+2+¡­+k£©+£¨31+32+¡­+3k-1£©=
k(k+1)
2
+
3k-3
2
£¬
µ±k=7ʱ£¬ÆäºÍÊÇ28+
37-3
2
=1120£¼2008
£¬
¶øµ±k=8ʱ£¬ÆäºÍÊÇ36+
38-3
2
=3315£¾2008
£®
ÓÖÒòΪ2008-1120=888=296¡Á3£¬ÊÇ3µÄ±¶Êý£¬
ËùÒÔ´æÔÚ×ÔÈ»Êým£¬Ê¹Sm=2008£®
´Ëʱm=7+£¨1+3+32+¡­+35£©+296=667£®
µãÆÀ£º±¾Ì⿼²éÁËÊýÁÐÓ뺯ÊýµÄ×ÛºÏÓ¦ÓÃÎÊÌ⣬½âÌâʱÁé»îÓ¦ÓÃÁ˵ȱȹØϵµÄÈ·¶¨£¬ÊýÁеÄÇóºÍ¹«Ê½µÈ֪ʶ£¬ÊǽÏÄѵÄÌâÄ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµãA£¨1£¬0£©£¬B£¨0£¬1£©ºÍ»¥²»ÏàͬµÄµãP1£¬P2£¬P3£¬¡­£¬Pn£¬¡­£¬Âú×ã
OPn
=an
OA
+bn
OB
£¨n¡ÊN*£©£¬ÆäÖÐan£¬bn·Ö±ðΪµÈ²îÊýÁк͵ȱÈÊýÁУ¬OΪ×ø±êÔ­µã£¬P1ÊÇÏ߶ÎABµÄÖе㣮
£¨1£©Çóa1£¬b1µÄÖµ£»
£¨2£©ÅжϵãP1£¬P2£¬P3£¬¡­£¬Pn£¬¡­ÄÜ·ñÔÚͬһÌõÖ±ÏßÉÏ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨3£©ÉèÊýÁÐanµÄ¹«²îΪ2£¬ÔÚÊýÁÐcnÖУ¬c1=1£¬c2=-13£¬cn+2-2cn+1+cn=an£¨n¡ÊN*£©£¬Çó³öcnÈ¡µÃ×îСֵʱnµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2007•ÉîÛÚһģ£©ÒÑÖªµãA£¨1£¬0£©£¬B£¨0£¬1£©ºÍ»¥²»ÏàͬµÄµãP1£¬P2£¬P3£¬¡­£¬Pn£¬¡­£¬Âú×ã
OPn
=an
OA
+bn
OB
(n¡ÊN*)
£¬ÆäÖÐ{an}¡¢{bn}·Ö±ðΪµÈ²îÊýÁк͵ȱÈÊýÁУ¬OΪ×ø±êÔ­µã£¬ÈôP1ÊÇÏ߶ÎABµÄÖе㣮
£¨¢ñ£©Çóa1£¬b1µÄÖµ£»
£¨¢ò£©µãP1£¬P2£¬P3£¬¡­£¬Pn£¬¡­ÄÜ·ñ¹²Ïߣ¿Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨¢ó£©Ö¤Ã÷£º¶ÔÓÚ¸ø¶¨µÄ¹«²î²»ÁãµÄ{an}£¬¶¼ÄÜÕÒµ½Î¨Ò»µÄÒ»¸ö{bn}£¬Ê¹µÃP1£¬P2£¬P3£¬¡­£¬Pn£¬¡­£¬¶¼ÔÚÒ»¸öÖ¸Êýº¯ÊýµÄͼÏóÉÏ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÊýÁÐ{an}ÖУ¬a1=1£¬a5=13£¬an+2=2an+1-an(n¡ÊN*)£¬ÊýÁÐ{bn}ÖУ¬b2=6£¬b3=3£¬bn+2=(n¡ÊN*)£¬ÒÑÖªµãP1(a1£¬b1)£¬P2(a2£¬b2)£¬¡­£¬Pn(an£¬bn)£¬¡­£¬ÔòÏòÁ¿µÄ×ø±êΪ    (    )

A.(3¡Á1006£¬-4[1-()1006])                   B.(3¡Á1004£¬-8[1-()1004])

C.(3¡Á1002£¬-4[1-()1002])                   D.(3¡Á1004£¬-4[1-()1004])

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÊýÁÐ{an}ÖУ¬a1=1£¬a5=13£¬an+2=2an+1-an(n¡ÊN*)£¬ÊýÁÐ{bn}ÖУ¬b2=6£¬b3=3£¬bn+2=(n¡ÊN*)£¬ÒÑÖªµãP1(a1£¬b1)£¬P2(a2£¬b2)£¬¡­£¬Pn(an£¬bn)£¬¡­£¬ÔòÏòÁ¿µÄ×ø±êΪ(    )

A£®(3¡Á1006£¬-4[1-()1006])         B£®(3¡Á1004£¬-8[1-()1004])

C£®(3¡Á1 002£¬-4[1-()1002])         D£®(3¡Á1004£¬-4[1-()1004]£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2007Äê¹ã¶«Ê¡ÉîÛÚÊи߿¼ÊýѧһģÊÔ¾í£¨ÎÄ¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÒÑÖªµãA£¨1£¬0£©£¬B£¨0£¬1£©ºÍ»¥²»ÏàͬµÄµãP1£¬P2£¬P3£¬¡­£¬Pn£¬¡­£¬Âú×㣬ÆäÖÐ{an}¡¢{bn}·Ö±ðΪµÈ²îÊýÁк͵ȱÈÊýÁУ¬OΪ×ø±êÔ­µã£¬ÈôP1ÊÇÏ߶ÎABµÄÖе㣮
£¨¢ñ£©Çóa1£¬b1µÄÖµ£»
£¨¢ò£©µãP1£¬P2£¬P3£¬¡­£¬Pn£¬¡­ÄÜ·ñ¹²Ïߣ¿Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨¢ó£©Ö¤Ã÷£º¶ÔÓÚ¸ø¶¨µÄ¹«²î²»ÁãµÄ{an}£¬¶¼ÄÜÕÒµ½Î¨Ò»µÄÒ»¸ö{bn}£¬Ê¹µÃP1£¬P2£¬P3£¬¡­£¬Pn£¬¡­£¬¶¼ÔÚÒ»¸öÖ¸Êýº¯ÊýµÄͼÏóÉÏ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸