精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
2
2
,直线l:y=x+2与原点为圆心,以椭圆C的短轴长为直径的圆相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点M(0,2)的直线l1与椭圆C交于G,H两点.设直线l1的斜率k>0,在x轴上是否存在点P(m,0),使得△PGH是以GH为底边的等腰三角形.如果存在,求出实数m的取值范围,如果不存在,请说明理由.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(Ⅰ)利用直线l:y=x+2与原点为圆心,以椭圆C的短轴长为直径的圆相切,求出b的值,利用椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
2
2
,即可求出a,从而可求椭圆C的方程;
(Ⅱ)在x轴上存在点P(m,0),使得△PGH是以GH为底边的等腰三角形.设l1的方程为y=kx+2(k>0),与椭圆方程联立,利用韦达定理,结合(
PG
+
PH
)•
GH
=0
,即可求出实数m的取值范围.
解答: 解:(Ⅰ)e2=
1
2
=
a2-b2
a2
,得a2=2b2
,…(3分)
∵直线y=x+2与圆x2+y2=b2相切,
2
2
=b
,解得b=
2
,则a2=4.(5分)
故所求椭圆C的方程为
x2
4
+
y2
2
=1
.(6分)
(Ⅱ)在x轴上存在点P(m,0),使得△PGH是以GH为底边的等腰三角形.…(7分)
理由如下:
设l1的方程为y=kx+2(k>0),
x2
4
+
y2
2
=1
y=kx+2
,得(1+2k2)x2+8kx+4=0

∵直线l1与椭圆C有两个交点,
∴△=64k2-16(1+2k2)=16(2k2-1)>0
k2
1
2

又∵k>0,∴k>
2
2

设G(x1,y1),H(x2,y2),则x1+x2=
-8k
1+2k2
.(9分)
PG
+
PH
=(x1-m,y1)+(x2-m,y2)
=(x1+x2-2m,y1+y2
=(x1+x2-2m,k(x1+x2)+4),
GH
=(x2-x1, y2-y1)=(x2-x1, k(x2-x1))

由于等腰三角形中线与底边互相垂直,则(
PG
+
PH
)•
GH
=0
.(10分)
∴(x2-x1)[(x1+x2)-2m]+k(x2-x1)[k(x1+x2)+4]=0.
(x2-x1)[(x1+x2)-2m+k2(x1+x2)+4k]=0
(x2-x1)[(1+k2)(x1+x2)+4k-2m]=0
∵k>0,∴x2-x1≠0,
∴(1+k2)(x1+x2)+4k-2m=0,
(1+k2)(
-8k
1+2k2
)+4k-2m=0,解得
m=
-2
1
k
+2k

设y=
1
k
+2k
,当k>
2
2
时,y′=-
1
k2
+2=
2k2-1
k2
>0

∴函数y=
1
k
+2k
(
2
2
,+∞)
上单调递增,
y>
1
2
2
+2×
2
2
=2
2
,(12分)
m=
-2
y
-2
2
2
=-
2
2
(13分)
点评:本题考查椭圆的方程,考查直线与圆的位置关系,考查直线与椭圆的位置关系,考查向量知识的运用,考查韦达定理,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一次研究性课堂上,老师给出函数f(x)=
x
1+|x|
,甲、乙、丙三位同学在研究此函数的性质时分别给出下列命题:
甲:函数f(x)为偶函数;
乙:函数f(x)的值域为(-1,1);
丙:若x1≠x2则一定有f(x1)≠f(x2
你认为上述三个命题中正确的个数有
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别是椭圆的左,右焦点,现以F2为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M,N,若过F1的直线MF1是圆F2的切线,则椭圆的离心率为(  )
A、
3
-1
B、2-
3
C、
2
2
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点都在抛物线y2=2px(p>0)上,且抛物线的焦点F满足
FA
+
FB
+
FC
=
0
,若BC边上的中线所在直线l的方程为mx+ny-m=0(m,n为常数且m≠0).
(Ⅰ)求p的值;
(Ⅱ)O为抛物线的顶点,△OFA、△OFB、△OFC的面积分别记为S1、S2、S3,求证:S12+S22+S32为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在对某渔业产品的质量调研中,从甲、乙两地出产的该产品中各随机抽取10件,测量该产品中某种元素的含量(单位:毫克).如图是测量数据的茎叶图:

规定:当产品中的此种元素含量≥15毫克时为优质品.
(Ⅰ)试用上述样本数据估计甲、乙两地该产品的优质品率(优质品件数/总件数);
(Ⅱ)从乙地抽出的上述10件产品中,随机抽取3件,求抽到的3件产品中优质品数ξ的分布列及数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:

在10名演员中,5人能歌,8人善舞,从中选出5人,使这5人能演出一个由1人独唱4人伴舞的节目,共有几种选法?

查看答案和解析>>

科目:高中数学 来源: 题型:

点P(4,4),圆C:(x-1)2+y2=5与椭圆E:
x2
18
+
y2
2
=1
有一个公共点A(3,1),F1、F2分别是椭圆左、右焦点,直线PF1与圆C相切.设Q为椭圆E上的一个动点,求
AP
AQ
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知离心率为
3
2
的椭圆C1的顶点A1,A2恰好是双曲线
x2
3
-y2=1的左右焦点,点P是椭圆C1上不同于A1,A2的任意一点,设直线PA1,PA2的斜率分别为k1,k2
(1)求椭圆C1的标准方程;
(2)当k1=
1
2
,在焦点在x轴上的椭圆C1上求一点Q,使该点到直线PA2的距离最大.
(3)试判断乘积“k1•k2”的值是否与点P的位置有关,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x,y满足
-1≤x+y≤1
-1≤x-y≤1
,则2x+3y的取值范围是
 

查看答案和解析>>

同步练习册答案