精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=Asin(ωx+φ)(A,ω>0,-π<φ<π)在一个周期内的图象如图所示.
(1)求f(x)的表达式;
(2)在△ABC中,f(C+$\frac{π}{6}$)=-1且$\overrightarrow{CA}$•$\overrightarrow{CB}$<0,求角C.

分析 (1)由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,从而求得函数f(x)的表达式.
(2)利用(1)及f(C$+\frac{π}{6}$)=-1可得sin(2C$+\frac{2π}{3}$)=-$\frac{1}{2}$,结合角的范围可求C=$\frac{π}{4}$或$\frac{7π}{12}$,利用平面向量数量积的运算可求cosC<0,从而可求C的值.

解答 解:(1)由图可知函数的最大值是2,最小值是-2,
∴A=2,…(1分)
∵$\frac{3}{4}$T=$\frac{7π}{12}$+$\frac{π}{6}$=$\frac{3π}{4}$,
∴T=π=$\frac{2π}{ω}$,可得:ω=2,…(2分)
又∵f(x)过点(-$\frac{π}{6}$,0),且根据图象特征得:-2×$\frac{π}{6}$+φ=0+2kπ,k∈Z,
∴φ=$\frac{π}{3}$+2kπ,k∈Z,…(4分)
而-π<φ<π,
∴φ=$\frac{π}{3}$.…(5分)
∴f(x)=2sin(2x+$\frac{π}{3}$).…(6分)
(2)∵f(x)=2sin(2x+$\frac{π}{3}$),
∴f(C$+\frac{π}{6}$)=2sin(2C$+\frac{2π}{3}$)=-1,…(7分)
∴sin(2C$+\frac{2π}{3}$)=-$\frac{1}{2}$,…(9分)
因为C为三角形内角,
∴C=$\frac{π}{4}$或$\frac{7π}{12}$,…(10分)
又∵$\overrightarrow{CA}$•$\overrightarrow{CB}$=abcosC<0,0<C<π,
∴cosC<0,$\frac{π}{2}$<C<π,
∴C=$\frac{7π}{12}$..…(12分)

点评 本题主要考查由函数y=Asin(ωx+∅)的部分图象求解析式,考查了平面向量数量积的运算,正弦函数的图象和性质的应用,考查了数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设M=2a(a-2)+4,N=(a-1)(a-3),则M,N的大小关系为(  )
A.M>NB.M<NC.M=ND.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数y=f(x)的导函数y=f'(x)的图象如图所示,给出下列命题:
①-3是函数y=f(x)的极值点;
②-1是函数y=f(x)的最小值点;
③y=f(x)在区间(-3,1)上单调递增;
④y=f(x)在x=0处切线的斜率小于零.
以上正确命题的序号是(  )
A.①②B.③④C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.为了调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如表:
微信控非微信控合计
男性262450
女性302050
合计5644100
(1)根据以上数据,能否有60%的把握认为“微信控”与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人赠送营养面膜1份,求所抽取5人中“微信控”和“非微信控”的人数;
(3)从(2)中抽取的5人中再随机抽取3人赠送200元的护肤品套装,求这2人中至少有1人为“非微信控”的概率.
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.500.400.250.050.0250.010
k00.4550.7081.3213.8405.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=$\frac{{{{(2x+3)}^0}}}{{\sqrt{|x|-x}}}$的定义域是(  )
A.{x|{x<0且x≠-$\frac{3}{2}}$}B.{x|x<0}C.{x|x>0}D.{x|{x≠0且x≠-$\frac{3}{2}}$,x∈R}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.(1)人的年龄与他(她)拥有的财富之间的关系;
(2)曲线上的点与该点的坐标之间的关系;
(3)苹果的产量与气候之间的关系;
(4)森林中的同一种树木,其断面直径与高度之间的关系;
(5)学生与他(她)的学号之间的关系,
其中有相关关系的是(1)(3)(4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x3+ax2+$\frac{3}{2}$x+$\frac{3}{2}$a(a∈R).
(1)若函数f(x)的图象上有与x轴平行的切线,求a的取值范围
(2)若f'(-1)=0,
①求f(x)的单调区间.
②证明对任意的x1,x2∈(-1,0),不等式|f(x1)-f(x2)|<$\frac{5}{16}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.化简:
(1)sin(-1200°)cos1290°+cos(-1020°)sin(-1050°)+tan945°;
(2)$\frac{{\sqrt{1-2sin40°cos40°}}}{{cos40°-\sqrt{1-{{sin}^2}50°}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设随机变量ξ服从正态分布N(4,9),若P(ξ>a)=P(ξ<a-4),则实数a的值为6.

查看答案和解析>>

同步练习册答案