分析 (1)先求函数f(x)=(x2+$\frac{3}{2}$)(x+a)(a∈R)的导函数,函数f(x)的图象上有与x轴平行的切线,即导函数为零时有实数解,再令方程的判别式大于或等于零即可得a的范围;
(2)先由f′(-1)=0求出a值;①令导函数大于零,解不等式可得函数的增区间,令导函数小于零,解不等式可得函数的减区间;
②求函数f(x)在[-1,0]上的最大值和最小值,当这两个值差的绝对值小于$\frac{5}{16}$,即证明了x1、x2∈(-1,0)时,不等式|f(x1)-f(x2)|<$\frac{5}{16}$恒成立.
解答 解:∵f(x)=x3+ax2+$\frac{3}{2}$x+$\frac{3}{2}$a,
∴f′(x)=3x2+2ax+$\frac{3}{2}$,
(1)∵函数f(x)的图象有与x轴平行的切线,
∴f′(x)=0有实数解则△=4a2-4×3×$\frac{3}{2}$≥0,
即a2≥$\frac{9}{2}$,
所以a的取值范围是(-∞,-$\frac{3\sqrt{2}}{2}$]∪[$\frac{3\sqrt{2}}{2}$,+∞);
(2)∵f′(-1)=0,∴3-2a+$\frac{3}{2}$=0,a=$\frac{9}{4}$,
∴f′(x)=3x2+$\frac{9}{2}$x+$\frac{3}{2}$=3(x+$\frac{1}{2}$)(x+1),
①由f'(x)>0得x<-1或x>-$\frac{1}{2}$;
由f′(x)<0得-1<x<-$\frac{1}{2}$,
∴f(x)的单调递增区间是(-∞,-1),(-$\frac{1}{2}$,+∞);
单调减区间为(-1,-$\frac{1}{2}$);
②证明:易知f(x)的最大值为f(-1)=$\frac{25}{8}$,
f(x)的极小值为f(-$\frac{1}{2}$)=$\frac{49}{16}$,又f(0)=$\frac{27}{8}$,
∴f(x)在[-1,0]上的最大值M=$\frac{27}{8}$,
最小值m=$\frac{49}{16}$,
∴对任意x1,x2∈(-1,0),
恒有|f(x1)-f(x2)|<M-m=$\frac{27}{8}$-$\frac{49}{16}$=$\frac{5}{16}$.
点评 本题综合考查了导数在研究函数性质中的应用,特别是在研究函数单调性和最值上的应用,解题时要透彻理解导数的几何意义,规范在求单调区间及最值时的解题步骤.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com