精英家教网 > 高中数学 > 题目详情
2.若函数y=x+$\frac{m}{x-1}$,x∈(1,+∞)在x=3处取得最小值,则正数m=4.

分析 先将函数配成x-1+$\frac{m}{x-1}$+1的形式,再运用基本不等式最值,根据取等条件确定m的值.

解答 解:∵x>1,∴x-1>0,
∴y=x+$\frac{m}{x-1}$=x-1+$\frac{m}{x-1}$+1≥2$\sqrt{(x-1)(\frac{m}{x-1})}$+1=2$\sqrt{m}$+1,
当且仅当x-1=$\frac{m}{x-1}$,即x=3时取等号.此时m=4,函数的最小值为5.
故答案为:4.

点评 本题主要考查了运用基本不等式求函数的最值,以及取等条件的分析,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.函数y=f(x)的导函数y=f'(x)的图象如图所示,给出下列命题:
①-3是函数y=f(x)的极值点;
②-1是函数y=f(x)的最小值点;
③y=f(x)在区间(-3,1)上单调递增;
④y=f(x)在x=0处切线的斜率小于零.
以上正确命题的序号是(  )
A.①②B.③④C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x3+ax2+$\frac{3}{2}$x+$\frac{3}{2}$a(a∈R).
(1)若函数f(x)的图象上有与x轴平行的切线,求a的取值范围
(2)若f'(-1)=0,
①求f(x)的单调区间.
②证明对任意的x1,x2∈(-1,0),不等式|f(x1)-f(x2)|<$\frac{5}{16}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.化简:
(1)sin(-1200°)cos1290°+cos(-1020°)sin(-1050°)+tan945°;
(2)$\frac{{\sqrt{1-2sin40°cos40°}}}{{cos40°-\sqrt{1-{{sin}^2}50°}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数y=tan(x+$\frac{π}{3}$).
(1)求f(x)的定义域;
(2)求f(x)单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=3,且(3+b)(sinA-sinB)=(c-b)sinC,则△ABC面积的最大值为(  )
A.$\sqrt{3}$B.3$\sqrt{3}$C.$\frac{5}{4}$$\sqrt{3}$D.$\frac{9}{4}$$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知曲线y=$\frac{1}{3}$x3+$\frac{4}{3}$
(1)求曲线在x=2处的切线方程;
(2)求曲线过点(2,4)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设随机变量ξ服从正态分布N(4,9),若P(ξ>a)=P(ξ<a-4),则实数a的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若正数a,b满足a2b=$\frac{1}{2}$,则a+b的最小值是$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案