精英家教网 > 高中数学 > 题目详情
7.已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=3,且(3+b)(sinA-sinB)=(c-b)sinC,则△ABC面积的最大值为(  )
A.$\sqrt{3}$B.3$\sqrt{3}$C.$\frac{5}{4}$$\sqrt{3}$D.$\frac{9}{4}$$\sqrt{3}$

分析 由已知及正弦定理化简可得b2+c2-a2=bc,利用余弦定理可求cosA,进而可求A=60°,从而利用基本不等式可得9≥bc,根据三角形面积公式即可计算得解.

解答 解:∵由a=3且 (3+b)(sinA-sinB)=(c-b)sinC,
即(a+b)(sinA-sinB)=(c-b)sinC,
∴由及正弦定理得:(a+b)(a-b)=(c-b)c,
∴b2+c2-a2=bc,
故$cosA=\frac{{{b^2}+{c^2}-{a^2}}}{2bc}=\frac{1}{2}$,
∴∠A=60°,
∴b2+c2-9=bc,可得:9=b2+c2-bc≥bc,
∴${S_{△ABC}}=\frac{1}{2}bcsinA≤\frac{{9\sqrt{3}}}{4}$.
故选:D.

点评 本题主要考查了三角形面积公式、正、余弦定理、基本不等式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.过点A(-3,-2)作直线与抛物线x2=8y在第二象限相切于点B,记抛物线的焦点为F,则直线BF的斜率为(  )
A.-$\frac{3}{2}$B.-$\frac{2}{3}$C.-$\frac{4}{3}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在等差数列{an}中,前n项和为Sn
(Ⅰ)若a1=2,且a22=a1•a5,求数列{an}的通项公式;
(Ⅱ)若a1>0,且S12>0,S13<0,则当n为何值时,Sn最大?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知cosα=$\frac{1}{2}$,求sinα,tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数y=x+$\frac{m}{x-1}$,x∈(1,+∞)在x=3处取得最小值,则正数m=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=($\frac{1}{2}$)${\;}^{2x-{x}^{2}}$的值域为(  )
A.[$\frac{1}{2}$,+∞)B.[1,+∞)C.(0,+∞)D.R

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}为等差数列,a1+a3+a5=9,a2+a4+a6=3,数列{an}的前n项和为Sn,则$\frac{{a}_{n}-{S}_{n}}{n}$的最小值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.棱长为3的正方体内有一个球,与正方体的12条棱都相切,则该球的体积为9$\sqrt{2}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=x2+$\frac{3}{x}$(x>0)的最小值是$\frac{3\root{3}{18}}{2}$.

查看答案和解析>>

同步练习册答案