| A. | -$\frac{3}{2}$ | B. | -$\frac{2}{3}$ | C. | -$\frac{4}{3}$ | D. | -$\frac{3}{4}$ |
分析 设B(m,$\frac{{m}^{2}}{8}$)(m<0),求得函数的导数,可得切线的斜率,再由两点的斜率公式,解方程可得m,即有B的坐标,运用两点的斜率公式计算即可得到所求值.
解答 解:设B(m,$\frac{{m}^{2}}{8}$)(m<0),
由y=$\frac{{x}^{2}}{8}$的导数为y′=$\frac{x}{4}$,
可得切线的斜率为$\frac{m}{4}$,
即有$\frac{m}{4}$=$\frac{\frac{{m}^{2}}{8}+2}{m+3}$,化为m2+6m-16=0,
解得m=-8(2舍去),
可得B(-8,8),又F(0,2),
则直线BF的斜率是$\frac{8-2}{-8}$=-$\frac{3}{4}$.
故选:D.
点评 本题考查直线和抛物线的位置关系,主要是相切的条件,注意运用导数的几何意义,考查直线的斜率公式的运用,化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ③④ | C. | ①③ | D. | ②④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 微信控 | 非微信控 | 合计 | |
| 男性 | 26 | 24 | 50 |
| 女性 | 30 | 20 | 50 |
| 合计 | 56 | 44 | 100 |
| P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
| k0 | 0.455 | 0.708 | 1.321 | 3.840 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | 3$\sqrt{3}$ | C. | $\frac{5}{4}$$\sqrt{3}$ | D. | $\frac{9}{4}$$\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com