精英家教网 > 高中数学 > 题目详情
8.若f(x)=-$\frac{1}{2}{x^2}$+bln(x+2)在(-2,+∞)上是减函数,则b的取值范围为(-∞,-1].

分析 根据函数在(-2,+∞)上是减函数,对函数f(x)进行求导,判断出f′(x)<0,进而根据导函数的解析式求得b的范围.

解答 解:由题意可知f′(x)=-x+$\frac{b}{x+2}$≤0在x∈(-2,+∞)上恒成立,
即b≤x(x+2)在x∈(-2,+∞)上恒成立,
∵f(x)=x(x+2)=x2+2x=(x-1)2-1,且x∈(-2,+∞)
∴f(x)≥-1
∴要使b≤x(x+2),需b≤-1
故答案为:(-∞,-1].

点评 本题主要考查了函数单调性的应用.利用导函数来判断函数的单调性,是常用的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{2x+a,(x<1)}\\{-x-2a,(x≥1)}\end{array}\right.$满足f(1-a)=f(1+a),其中a不为零,则实数a的值为(  )
A.-$\frac{3}{2}$B.-$\frac{3}{4}$C.$\frac{3}{2}$或-$\frac{3}{4}$D.-$\frac{3}{2}$或-$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.等式x2+ax+1≥0对于一切x∈(2,3)成立,则a的取值范围是(  )
A.a≤0B.a≥-$\frac{5}{2}$
C.-$\frac{5}{2}$≤a≤0D.-3≤a≤0
E.以上结论均不正确   

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知A={-2,-1,0,1,2},B={x|x2=1},则A∩B=(  )
A.{-1,0,1 }B.{-1,0}C.{-1,1}D.{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=ax3+bx2+cx+d是定义在实数集R上的函数,其图象与x轴交于A,B,C三点,若B点坐标为(2,0),且f(x)在[-1,0]和[4,5]上有相同的单调性,在[0,2]和[4,5]上有相反的单调性.
(1)求c的值,写出极值点横坐标的取值范围(不需要证明);
(2)在函数f(x)的图象上是否存在一点M(x0,y0),使曲线y=ax3+bx2+cx+d在点M处的切线斜率为3b?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知等比数列{an}的各项均为正数,且a1a100+a3a98=8,则log2a1+log2a2+…+log2a100=(  )
A.10B.50C.100D.1000

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=(x+1)2(x-1)在x=2处的导数等于(  )
A.1B.4C.9D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.过点A(-3,-2)作直线与抛物线x2=8y在第二象限相切于点B,记抛物线的焦点为F,则直线BF的斜率为(  )
A.-$\frac{3}{2}$B.-$\frac{2}{3}$C.-$\frac{4}{3}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在等差数列{an}中,前n项和为Sn
(Ⅰ)若a1=2,且a22=a1•a5,求数列{an}的通项公式;
(Ⅱ)若a1>0,且S12>0,S13<0,则当n为何值时,Sn最大?请说明理由.

查看答案和解析>>

同步练习册答案