| A. | 10 | B. | 50 | C. | 100 | D. | 1000 |
分析 依题意,利用等比数列的性质可得a1a100=a2a99=a3a98=…=a50a51=4,再利用对数的运算性质得到log2a1+log2a100=log2a1a100=2,即可求得log2a1+log2a2+…+log2a100的值.
解答 解:∵数列{an}为各项均为正数的等比数列,且a1a100+a3a98=8,
∴a1a100=a2a99=a3a98=…=a50a51=4,
∴log2a1a100=log24=2,
即log2a1+log2a100=log2a2+log2a99=…=log2a50+log2a51=2,
∴log2a1+log2a2+…+log2a100
=(log2a1+log2a100)+(log2a2+log2a99)+…+(log2a50+log2a51)=2×50=100.
故选:C.
点评 本题考查数列的求和,突出考查等比数列的性质及对数的运算性质,求得log2a1+log2a100=log2a2+log2a99=…=log2a50+log2a51=2是关键,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $x-y+\sqrt{2}=0$ | B. | $x-y-\sqrt{2}=0$ | ||
| C. | $x-y+\sqrt{2}=0$或$x-y-\sqrt{2}=0$ | D. | x-y-2=0或x-y+2=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com