精英家教网 > 高中数学 > 题目详情
13.等式x2+ax+1≥0对于一切x∈(2,3)成立,则a的取值范围是(  )
A.a≤0B.a≥-$\frac{5}{2}$
C.-$\frac{5}{2}$≤a≤0D.-3≤a≤0
E.以上结论均不正确   

分析 将参数a与变量x分离,将不等式恒成立问题转化为求函数最值问题,这是解决恒成立问题的常用解法.

解答 解:x2+ax+1≥0对于一切x∈(2,3)成立?a≥$-x-\frac{1}{x}$对于一切x∈(2,3)成立
∵y=$-x-\frac{1}{x}$在区间(2,3)上是减函数
∴$-x-\frac{1}{x}$<-$\frac{1}{2}$-2=-$\frac{5}{2}$
∴a≥-$\frac{5}{2}$
故选:B.

点评 本题综合考查了不等式的应用,特别考查了恒成立问题的解法,解题时要思路开阔,认真细致.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.在平面直角坐标系xOy中,已知第一象限内的点P(a,b)在直线2x+y-1=0上,则$\frac{4}{a+b}$+$\frac{1}{a}$取得最小值时,a的值为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设x为△ABC的一个内角.函数f(x)=sinx+cosx.
(1)求x为何值时.f(x)有最大值?并求出该最大值.
(2)若f(x)=$\frac{1}{2}$,求cos2x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=x2+4x+1在区间(-6,a)上单调递减,则实数a的取值范围是(-6,-2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=$\frac{x-2}{2x-3}$的值域为(  )
A.(-∞,$\frac{1}{2}$)∪($\frac{1}{2}$,+∞)B.(-∞,1)∪(1,+∞)C.(-∞,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,+∞)D.($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xOy中,动点P到定点M(0,2)和它到定直线y=0的距离相等,设点P的轨迹为C.
(1)求曲线C的方程;
(2)过定点M作直线l与曲线C相交于A、B两点,若点N是点M关于原点对称的点,求△ANB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设M=2a(a-2)+4,N=(a-1)(a-3),则M,N的大小关系为(  )
A.M>NB.M<NC.M=ND.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若f(x)=-$\frac{1}{2}{x^2}$+bln(x+2)在(-2,+∞)上是减函数,则b的取值范围为(-∞,-1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.为了调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如表:
微信控非微信控合计
男性262450
女性302050
合计5644100
(1)根据以上数据,能否有60%的把握认为“微信控”与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人赠送营养面膜1份,求所抽取5人中“微信控”和“非微信控”的人数;
(3)从(2)中抽取的5人中再随机抽取3人赠送200元的护肤品套装,求这2人中至少有1人为“非微信控”的概率.
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.500.400.250.050.0250.010
k00.4550.7081.3213.8405.0246.635

查看答案和解析>>

同步练习册答案