| A. | (-∞,$\frac{1}{2}$)∪($\frac{1}{2}$,+∞) | B. | (-∞,1)∪(1,+∞) | C. | (-∞,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,+∞) | D. | ($\frac{1}{2}$,+∞) |
分析 分离常数得到$y=\frac{1}{2}-\frac{1}{2(2x-3)}$,从而由$\frac{1}{2(2x-3)}≠0$即可得出y的范围,即得出该函数的值域.
解答 解:$y=\frac{x-2}{2x-3}=\frac{\frac{1}{2}(2x-3)+\frac{3}{2}-2}{2x-3}$=$\frac{1}{2}-\frac{1}{2(2x-3)}$;
$\frac{1}{2(2x-3)}≠0$;
∴$y≠\frac{1}{2}$;
∴该函数值域为$(-∞,\frac{1}{2})∪(\frac{1}{2},+∞)$.
故选A.
点评 考查函数值域的概念及求法,分离常数法的运用,熟悉反比例函数的值域.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(1)<f(2)<f(4) | B. | f(2)<f(1)<f(4) | C. | f(2)<f(4)<f(1) | D. | f(4)<f(2)<f(1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a≤0 | B. | a≥-$\frac{5}{2}$ | ||
| C. | -$\frac{5}{2}$≤a≤0 | D. | -3≤a≤0 | ||
| E. | 以上结论均不正确 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com