精英家教网 > 高中数学 > 题目详情
3.如果开口向上的二次函数f(t)对任意的t有f(2+t)=f(2-t),那么(  )
A.f(1)<f(2)<f(4)B.f(2)<f(1)<f(4)C.f(2)<f(4)<f(1)D.f(4)<f(2)<f(1)

分析 判断二次函数的对称轴,利用二次函数的性质推出结果即可.

解答 解:开口向上的二次函数f(t)对任意的t有f(2+t)=f(2-t),
可知函数的对称轴为:x=2,
f(2)是函数的最小值,f(4)是最大值,
所以f(2)<f(1)<f(4).
故选:B.

点评 本题考查二次函数的性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.正方体中,BD1与B1C所成角是(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一帆船要从A处驶向正东方向200海里的B处,当时有自西北方向吹来的风,风速为15$\sqrt{2}$海里/小时,如果帆船计划在5小时内到达目的地,则船速的大小应为5$\sqrt{34}$海里/小时.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.不等式(x-1)(a-x)<0(a>1)的解集为(-∞,1)∪(a,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若a,b,c成等比数列,其中0<a<b<c,n是大于1的整数,那么logan,logbn,logcn组成的数列是(  )
A.等比数列
B.等差数列
C.每项的倒数成等差数列
D.第二项与第三项分别是第一项与第二项的n次幂

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=$\frac{x-2}{2x-3}$的值域为(  )
A.(-∞,$\frac{1}{2}$)∪($\frac{1}{2}$,+∞)B.(-∞,1)∪(1,+∞)C.(-∞,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,+∞)D.($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若tanx=$\frac{1}{2}$,则$\frac{{3{{sin}^2}x-2}}{sinxcosx}$=-$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设数列an是公差d<0的等差数列,Sn为其前n项和,若S6=S7,则Sn取最大值时,n=(  )
A.5B.6C.5或6D.6或7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.边长为2的等边△ABC的面积为$\sqrt{3}$,若D为BC的中点,点E满足$\overrightarrow{CE}$=$\frac{1}{3}\overrightarrow{CA}$,则$\overrightarrow{DE}$•$\overrightarrow{CB}$=-$\frac{4}{3}$.

查看答案和解析>>

同步练习册答案