精英家教网 > 高中数学 > 题目详情
13.正方体中,BD1与B1C所成角是(  )
A.30°B.45°C.60°D.90°

分析 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出直线BD1与B1C所成角的大小.

解答 解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,
建立空间直角坐标系,
设正方体ABCD-A1B1C1D1的棱长为1,
则B(1,1,0),D1(0,0,1),
B1(1,1,1),C(0,1,0),
$\overrightarrow{B{D}_{1}}$=(-1,-1,1),$\overrightarrow{{B}_{1}C}$=(-1,0,-1),
设直线BD1与B1C所成角的大小为θ,
cosθ=$\frac{|\overrightarrow{B{D}_{1}}•\overrightarrow{{B}_{1}C}|}{|\overrightarrow{B{D}_{1}}||\overrightarrow{{B}_{1}C}|}$=$\frac{|1+0-1|}{\sqrt{3}×\sqrt{2}}$=0,
∴θ=90°.
∴直线BD1与B1C所成角的大小是90°.
故选:D.

点评 本题考查异面直线所成角的大小的求法,是基础题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.一圆锥底面半径为2,母线长为6,有一球在该圆锥内部且与它的侧面和底面都相切,则这个球的半径为(  )
A.$\sqrt{2}$B.1C.$\frac{\sqrt{2}}{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列四个命题中是真命题的是(  )
①存在x∈(0,+∞),使不等武2x<3x成立;
②不存在x∈(0,1),使不等式log2x<log3x成立;
③对任意的x∈(0,1),不等式log2x<log3x成立;
④对任意的x∈(0,+∞),不等式log2x<$\frac{1}{x}$成立.
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=$\sqrt{x-1}$+2x的值域为[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在不等式组$\left\{\begin{array}{l}{x-\sqrt{3}y+3≥0}\\{x+\sqrt{3}y+3≥0}\\{x≤3}\end{array}\right.$表示的平面区域内作圆M,则最大圆M的标准方程(x-1)2+y2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=alnx+blog2x+1,f(2016)=3,则f($\frac{1}{2016}$)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知O(0,0),A(0,3),M为平面内的点.
(1)如果直线x-y+a=0上总存在点M使得MA=2MO,求实数a的取值范围;
(2)已知C(0,-1),MA=2MO,若P(x,y)是直线x-y-4=0上的点,且满足∠MPC=30°,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和Sn,且满足a1=1,Sn2=an(Sn-$\frac{1}{2}$),(n≥2).
(1)证明:数列{$\frac{1}{{S}_{n}}$}是等差数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如果开口向上的二次函数f(t)对任意的t有f(2+t)=f(2-t),那么(  )
A.f(1)<f(2)<f(4)B.f(2)<f(1)<f(4)C.f(2)<f(4)<f(1)D.f(4)<f(2)<f(1)

查看答案和解析>>

同步练习册答案