| A. | 等比数列 | |
| B. | 等差数列 | |
| C. | 每项的倒数成等差数列 | |
| D. | 第二项与第三项分别是第一项与第二项的n次幂 |
分析 a,b,c是成等比数列的正数,可得b2=ac.计算$\frac{2}{lo{g}_{b}n}-\frac{1}{lo{g}_{a}n}-\frac{1}{lo{g}_{c}n}$的值为0,即可判断出结论.
解答 解:∵a,b,c成等比数列,∴b2=ac,
∵n为大于1的整数,0<a<b<c,
∴$\frac{2}{lo{g}_{b}n}-\frac{1}{lo{g}_{a}n}-\frac{1}{lo{g}_{c}n}$=2lognb-logna-lognc
=$lo{g}_{n}\frac{{b}^{2}}{ac}=lo{g}_{n}1=0$,
则logan,logbn,logcn各项倒数成等差数列.
故选:C.
点评 本题考查了等差数列与等比数列的通项公式及其性质、对数的运算性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(1)<f(2)<f(4) | B. | f(2)<f(1)<f(4) | C. | f(2)<f(4)<f(1) | D. | f(4)<f(2)<f(1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {α|α=2kπ-$\frac{π}{4}$,k∈Z} | B. | {α|α=2kπ+$\frac{π}{4}$,k∈Z} | C. | {α|α=2kπ-$\frac{5π}{4}$,k∈Z} | D. | {α|α=2kπ+$\frac{5π}{4}$,k∈Z} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com