分析 先根据椭圆的方程求得焦点坐标和离心率,进而可知双曲线的半焦距,设出双曲线的标准方程,根据离心率之和求得a,再利用c求得b.答案可得.
解答 解:整理椭圆方程得$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{25}=1$.
∴c1=$\sqrt{25-9}$=4,
∴焦点坐标为(0,4)(0,-4),离心率e1=$\frac{4}{5}$,
∴设双曲线方程为$\frac{{y}^{2}}{{a}^{2}}-\frac{{x}^{2}}{{b}^{2}}$=1,
则半焦距c2=4
∴$\frac{4}{a}+\frac{4}{5}$=2,∴a=$\frac{10}{3}$
∴b=$\frac{2\sqrt{11}}{3}$
∴双曲线方程为$\frac{{y}^{2}}{\frac{100}{9}}-\frac{{x}^{2}}{\frac{44}{9}}=1$.
点评 本题主要考查了双曲线的标准方程.在求曲线方程的问题中,巧设方程,减少待定系数,是非常重要的方法技巧.特别是具有公共焦点的两种曲线,它们的公共点同时具有这两种曲线的性质,解题时要充分注意.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,$\frac{1}{2}$)∪($\frac{1}{2}$,+∞) | B. | (-∞,1)∪(1,+∞) | C. | (-∞,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,+∞) | D. | ($\frac{1}{2}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ③④ | C. | ①③ | D. | ②④ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com