精英家教网 > 高中数学 > 题目详情
16.双曲线和椭圆25x2+9y2=225有公共焦点,它们的离心率之和为2,则双曲线的标准方程为$\frac{{y}^{2}}{\frac{100}{9}}-\frac{{x}^{2}}{\frac{44}{9}}=1$.

分析 先根据椭圆的方程求得焦点坐标和离心率,进而可知双曲线的半焦距,设出双曲线的标准方程,根据离心率之和求得a,再利用c求得b.答案可得.

解答 解:整理椭圆方程得$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{25}=1$.
∴c1=$\sqrt{25-9}$=4,
∴焦点坐标为(0,4)(0,-4),离心率e1=$\frac{4}{5}$,
∴设双曲线方程为$\frac{{y}^{2}}{{a}^{2}}-\frac{{x}^{2}}{{b}^{2}}$=1,
则半焦距c2=4
∴$\frac{4}{a}+\frac{4}{5}$=2,∴a=$\frac{10}{3}$
∴b=$\frac{2\sqrt{11}}{3}$
∴双曲线方程为$\frac{{y}^{2}}{\frac{100}{9}}-\frac{{x}^{2}}{\frac{44}{9}}=1$.

点评 本题主要考查了双曲线的标准方程.在求曲线方程的问题中,巧设方程,减少待定系数,是非常重要的方法技巧.特别是具有公共焦点的两种曲线,它们的公共点同时具有这两种曲线的性质,解题时要充分注意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.求下列函数的值域(用区间表示)
(1)y=x2-3x+4;
(2)f(x)=$\sqrt{{x}^{2}-2x+4}$
(3)y=$\frac{-5}{x+3}$
(4)f(x)=$\frac{x-2}{x+3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}满足:a4n-3=1,a4n-1=0,a2n=an,n∈N*,则a2016=0;a2025=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设x为△ABC的一个内角.函数f(x)=sinx+cosx.
(1)求x为何值时.f(x)有最大值?并求出该最大值.
(2)若f(x)=$\frac{1}{2}$,求cos2x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.不等式(x-1)(a-x)<0(a>1)的解集为(-∞,1)∪(a,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=x2+4x+1在区间(-6,a)上单调递减,则实数a的取值范围是(-6,-2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=$\frac{x-2}{2x-3}$的值域为(  )
A.(-∞,$\frac{1}{2}$)∪($\frac{1}{2}$,+∞)B.(-∞,1)∪(1,+∞)C.(-∞,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,+∞)D.($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设M=2a(a-2)+4,N=(a-1)(a-3),则M,N的大小关系为(  )
A.M>NB.M<NC.M=ND.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数y=f(x)的导函数y=f'(x)的图象如图所示,给出下列命题:
①-3是函数y=f(x)的极值点;
②-1是函数y=f(x)的最小值点;
③y=f(x)在区间(-3,1)上单调递增;
④y=f(x)在x=0处切线的斜率小于零.
以上正确命题的序号是(  )
A.①②B.③④C.①③D.②④

查看答案和解析>>

同步练习册答案