精英家教网 > 高中数学 > 题目详情
4.设x为△ABC的一个内角.函数f(x)=sinx+cosx.
(1)求x为何值时.f(x)有最大值?并求出该最大值.
(2)若f(x)=$\frac{1}{2}$,求cos2x.

分析 (1)利用辅助角公式化简函数的解析式,再根据正弦函数的最值求得f(x)的最大值.
(2)根据f(x)=$\frac{1}{2}$,求得sin(x+$\frac{π}{4}$)的值,可得 cos(x+$\frac{π}{4}$) 的值,再利用诱导公式、二倍角公式求得cos2x的值.

解答 解:(1)∵x为△ABC的一个内角,∴x∈(0,π),∵函数f(x)=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$),
且x+$\frac{π}{4}$∈($\frac{π}{4}$,$\frac{5π}{4}$),故当x+$\frac{π}{4}$=$\frac{π}{2}$,即x=$\frac{π}{4}$时,f(x)有最大值为$\sqrt{2}$.
(2)若f(x)=$\sqrt{2}$sin(x+$\frac{π}{4}$)=$\frac{1}{2}$,则sin(x+$\frac{π}{4}$)=$\frac{\sqrt{2}}{4}$<$\frac{\sqrt{2}}{2}$,∴x+$\frac{π}{4}$>$\frac{3π}{4}$,
∴cos(x+$\frac{π}{4}$)=-$\sqrt{{1-sin}^{2}(x+\frac{π}{4})}$=-$\frac{\sqrt{14}}{4}$,
此时,cos2x=sin(2x+$\frac{π}{2}$)=2sin(x+$\frac{π}{4}$) cos(x+$\frac{π}{4}$)=-$\frac{\sqrt{7}}{4}$.

点评 本题主要考查辅助角公式,正弦函数的最值,二倍角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.0.9,0.99,0.999…,$\underset{\underbrace{0.99…9…}}{n个9}$前n项的和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.空间四条直线两两相交,则可确定的不同平面数为(  )
A.1个B.4个C.6个D.1个或4个或6个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{2x+a,(x<1)}\\{-x-2a,(x≥1)}\end{array}\right.$满足f(1-a)=f(1+a),其中a不为零,则实数a的值为(  )
A.-$\frac{3}{2}$B.-$\frac{3}{4}$C.$\frac{3}{2}$或-$\frac{3}{4}$D.-$\frac{3}{2}$或-$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(x)=ax3+bsinx+9(ab≠0),且f(-2)=3,则f(2)=15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设集合A={(x1,x2,x3,x4,x5)|xi∈{-1,0,1},i=1,2,3,4,5},那么集合A中满足条件“1≤x1+x2+x3+x4+x5≤3”的元素个数为90.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.双曲线和椭圆25x2+9y2=225有公共焦点,它们的离心率之和为2,则双曲线的标准方程为$\frac{{y}^{2}}{\frac{100}{9}}-\frac{{x}^{2}}{\frac{44}{9}}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.等式x2+ax+1≥0对于一切x∈(2,3)成立,则a的取值范围是(  )
A.a≤0B.a≥-$\frac{5}{2}$
C.-$\frac{5}{2}$≤a≤0D.-3≤a≤0
E.以上结论均不正确   

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=(x+1)2(x-1)在x=2处的导数等于(  )
A.1B.4C.9D.15

查看答案和解析>>

同步练习册答案