精英家教网 > 高中数学 > 题目详情
3.在平面直角坐标系xOy中,已知第一象限内的点P(a,b)在直线2x+y-1=0上,则$\frac{4}{a+b}$+$\frac{1}{a}$取得最小值时,a的值为$\frac{1}{3}$.

分析 第一象限内的点P(a,b)在直线2x+y-1=0上,可得a,b>0,2a+b=1.利用“乘1法”与基本不等式的性质即可得出.

解答 解:第一象限内的点P(a,b)在直线2x+y-1=0上,∴a,b>0,2a+b=1.
则$\frac{4}{a+b}$+$\frac{1}{a}$=(a+a+b)$(\frac{4}{a+b}+\frac{1}{a})$=5+$\frac{4a}{a+b}$+$\frac{a+b}{a}$≥5+2$\sqrt{\frac{4a}{a+b}×\frac{a+b}{a}}$=9,
当且仅当a=b=$\frac{1}{3}$时取等号,即$\frac{4}{a+b}$+$\frac{1}{a}$取得最小值.
故答案为:$\frac{1}{3}$.

点评 本题考查了点与直线的关系、“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.某函数的图象向右平移$\frac{π}{4}$个单位后,所得图象的解析式y=sin(2x+$\frac{π}{4}$),则原来函数的解析式为(  )
A.y=sin(2x-$\frac{π}{4}$)B.y=sin(2x+$\frac{π}{2}$)C.y=sin(2x+$\frac{3π}{4}$)D.y=sin(2x+$\frac{π}{4}$)-$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.0.9,0.99,0.999…,$\underset{\underbrace{0.99…9…}}{n个9}$前n项的和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.正方体中,EC与BD所成角是(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=alnx+blog2x+1,f(2016)=3,则f($\frac{1}{2016}$)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=ax2-x+1在区间(-∞,2)内是减函数,则a的取值范围是(  )
A.(0,$\frac{1}{4}$]B.[0,$\frac{1}{4}$]C.[2,+∞)D.(0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.空间四条直线两两相交,则可确定的不同平面数为(  )
A.1个B.4个C.6个D.1个或4个或6个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{2x+a,(x<1)}\\{-x-2a,(x≥1)}\end{array}\right.$满足f(1-a)=f(1+a),其中a不为零,则实数a的值为(  )
A.-$\frac{3}{2}$B.-$\frac{3}{4}$C.$\frac{3}{2}$或-$\frac{3}{4}$D.-$\frac{3}{2}$或-$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.等式x2+ax+1≥0对于一切x∈(2,3)成立,则a的取值范围是(  )
A.a≤0B.a≥-$\frac{5}{2}$
C.-$\frac{5}{2}$≤a≤0D.-3≤a≤0
E.以上结论均不正确   

查看答案和解析>>

同步练习册答案