精英家教网 > 高中数学 > 题目详情
13.某函数的图象向右平移$\frac{π}{4}$个单位后,所得图象的解析式y=sin(2x+$\frac{π}{4}$),则原来函数的解析式为(  )
A.y=sin(2x-$\frac{π}{4}$)B.y=sin(2x+$\frac{π}{2}$)C.y=sin(2x+$\frac{3π}{4}$)D.y=sin(2x+$\frac{π}{4}$)-$\frac{π}{4}$

分析 由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.

解答 解:由题意可得,把函数y=sin(2x+$\frac{π}{4}$)的图象向左平移$\frac{π}{4}$个单位后得到函数y=sin[2(x+$\frac{π}{4}$)+$\frac{π}{4}$]=sin(2x+$\frac{3π}{4}$)的图象,
故选:C.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.(1)如果f($\frac{1}{x}$)=$\frac{x}{1-x}$,则当x≠0且x≠1时,求f(x)的解析式;
(2)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.数列求和:
(1)求数列1$\frac{1}{2}$,2$\frac{1}{4}$,3$\frac{1}{8}$,…(n+$\frac{1}{{2}^{n}}$),…的前n项和Sn
(2)求和:1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+…+$\frac{1}{1+2+…+n}$;
(3)设f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,求f($\frac{1}{2014}$)+f($\frac{1}{2013}$)+…+f(1)+f(2)+…+f(2014);
(4)求和:Sn=$\frac{1}{a}$+$\frac{2}{{a}^{2}}$+$\frac{3}{{a}^{3}}$+…+$\frac{n}{{a}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=sinωx+$\sqrt{3}$cosωx(ω>0),f($\frac{π}{6}$)+f($\frac{π}{2}$)=0,且f(x)在区间($\frac{π}{6}$,$\frac{π}{2}$)上递减,则ω=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若点A、B是平面α内的两点,点C时直线AB上的点,则C必在α内,这一命题用符号语言可以表述为若A∈α,B∈α,且C∈AB,则C∈α.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.判断下列对应关系是否为函数.
(1)A=R,B=R,对任意的x∈A,x→$\sqrt{x}$;
(2)A=R,B={0,1},对应关系f:当x为有理数时,f(x)=1;当x为无理数时,f(x)=0;
(3)A=B=N*,对任意的x∈A,x→|x-5|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,已知下列条件,求三角形的面积S(精确到0.01cm2):
(1)a=10$\sqrt{2}$cm,c=20cm,∠A=30°;
(2)b=12cm,∠A=30°,∠B=60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.随着新能源的发展,电动汽车在全社会逐渐地普及开来,据某报记者了解,某市电动汽车示范区运营服务公司逐步建立了全市乃至全国的分时租赁的服务体系,为新能源汽车分时租赁在全国的推广提供了可复制的市场化运营模式.现假设该公司有750辆电动汽车供阻赁使用.管理这些电动汽车的费用是每日1725元.根据调查发现.若每辆电动汽车的日租金不超过90元.则电动汽车可以全部租出;若超过90元,则每超过1元,租不出的电动汽车就增加3辆,设每辆电动汽车的日租金为x(元)(60≤x≤300,x∈N*),用y(元)表示出租电动汽车的日净收入(日净收入等于日出租电动汽车的总收入减去日管理费用).
(1)求函数y=f(x)的解析式;
(2)试问当每辆电动汽车的日租金为多少元时,才能使日净收入最多?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在平面直角坐标系xOy中,已知第一象限内的点P(a,b)在直线2x+y-1=0上,则$\frac{4}{a+b}$+$\frac{1}{a}$取得最小值时,a的值为$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案