|
(1) |
解析:设g(x)=f(x)-x=ax2+(b-1)x+1,且a>0.∵xl<1<x2 ∴(x1-1)(x2-1)<0,即x1x2<(x1+x2)-1. 于是x=m=-==(x1+x2)-x1x2>(x1+x2)-[(x1+x2)-1]=. |
(2) |
由方程g(x)=ax2+(b-1)x+1=0,可知x1x2=>0,∴xl、x2同号.由0<x1<2,得x2-x1=2,∴x2=x1+2>2,∴g(2)<0. 即4a+2b-1<0. ① 又(x2-x1)2=-=4 ∴2a+1=(∵a>0),代入①式,得2<3-2b,解得b<. |
(3) |
由条件得,x1+x2=,x1x2=. 不妨设α=β,则0>2(α+x1)(β-x2)=2αβ-2(βx1-ax2)+2x1x2=2αβ-(x1+x2)(α+β)+2x1x2+(x1-x2)(α-β)>2αβ-(x1+x2)(α+β)+2x1x2=2αβ-+ 故2aαβ-(1-b)(α+β)+2<0. 点评:二次函数、二次方程、二次不等式是高中数学教学的重点内容,也是数学高考的重点内容.本例通过三个“二次”间的相互联系,利用数形结合将对称轴x=m=-==(x1+x2)-x1x2与韦达定理相结合,从而得出m的取值范围;由二次方程的根的分布得出一组关于字母b的不等式;由不等式的基本性质结合目标函数“2aαβ-(1-b)(α+β)+2<0”展开推理. |
科目:高中数学 来源:福建省南安一中2011-2012学年高一上学期期中考试数学试题 题型:044
对于函数f(x)=a-(a∈R):
(Ⅰ)是否存在实数a使函数f(x)为奇函数?
(Ⅱ)探究函数f(x)的单调性(不用证明),并求出函数f(x)的值域.
查看答案和解析>>
科目:高中数学 来源:中山市东升高中2008届高三数学基础达标训练1 题型:044
对于函数f(x)=a-(aÎ R):
(1)探索函数的单调性;
(2)是否存在实数a使函数f(x)为奇函数?
查看答案和解析>>
科目:高中数学 来源:浙江省台州市四校2012届高三第一次联考数学文科试题 题型:044
对于函数f(x)=-x4+x3+ax2-2x-2,其中a为实常数,已知函数
y=f(x)的图象在点(-1,f(-1))处的切线与y轴垂直.
(Ⅰ)求实数a的值;
(Ⅱ)若关于x的方程f(3x)=m有三个不等实根,求实数m的取值范围;
查看答案和解析>>
科目:高中数学 来源: 题型:
设函数y=f(x)在(-∞,+∞)内有定义,对于给定的正数K,定义函数:fK(x)=取函数f(x)=a-|x|(a>1).当K=时,函数fK(x)在下列区间上单调递减的是( )
A.(-∞,0) B.(-a,+∞)
C.(-∞,-1) D.(1,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
“我们称使f(x)=0的x为函数y=f(x)的零点.若函数y=f(x)在区间[a,b]上是连续的、单调的函数,且满足f(a)·f(b)<0,则函数y=f(x)在区间[a,b]上有唯一的零点”.对于函数f(x)=6ln(x+1)-x2+2x-1.
(1)讨论函数f(x)在其定义域内的单调性,并求出函数极值;
(2)证明连续函数f(x)在[2,+∞)内只有一个零点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com