精英家教网 > 高中数学 > 题目详情
10.正四棱锥V-ABCD的侧棱长与底面边长相等,E是VA中点,O是底面中心,则异面直线EO与BC所成的角是(  )
A.30°B.45°C.60°D.90°

分析 以O为原点,OA为x轴,OB为y轴,OV为z轴,建立空间直角坐标系,由此能求出异面直线EO与BC所成的角的大小.

解答 解:以O为原点,OA为x轴,OB为y轴,OV为z轴,建立空间直角坐标系,
设正四棱锥V-ABCD的侧棱长与底面边长都为2,
则O(0,0,0),A($\sqrt{2}$,0,0),V(0,0,$\sqrt{2}$),E($\frac{\sqrt{2}}{2}$,0,$\frac{\sqrt{2}}{2}$),
B(0,$\sqrt{2}$,0),C(-$\sqrt{2}$,0,0),
∴$\overrightarrow{OE}$=($\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}$),$\overrightarrow{BC}$=(-$\sqrt{2}$,-$\sqrt{2}$,0),
设异面直线EO与BC所成的角为θ,
则cosθ=|cos<$\overrightarrow{EO},\overrightarrow{BC}$>|=|$\frac{\overrightarrow{EO}•\overrightarrow{BC}}{|\overrightarrow{EO}|•|\overrightarrow{BC}|}$|=|$\frac{-1}{\sqrt{\frac{1}{2}+\frac{1}{2}}•\sqrt{2+2}}$|=$\frac{1}{2}$,
∴θ=60°,
∴异面直线EO与BC所成的角是60°.
故选:C.

点评 本题考查异面直线所成角的大小的求法,是基础题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.己知三棱锥A-BCD中∠DBC=90°,AD⊥DB,AD⊥DC,AB=$\sqrt{5}$,CD=$\sqrt{6}$,AD=1,则三棱锥A-BCD的外接球半径为$\frac{\sqrt{11}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.判断下列命题的真假:
(1)方程x2-3x-4=0的判别式大于或等于0;
(2)正方形是轴对称图形且正三角形也是轴对称图形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}中,$\frac{2{a}_{n}}{{a}_{n}+2}$=an+1(n∈N+),a1=2.
(1)求证:数列{$\frac{1}{{a}_{n}}$}是等差数列,并求通项公式an
(2)设bn=anan+1,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.【文】设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{8}$=1(a>0)的左、右焦点分别为F1、F2,其一条渐近线与圆(x-a)2+y2=4相切于点M,则△F1MF2的面积为(  )
A.4$\sqrt{2}$B.2$\sqrt{2}$C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.各棱长都为2的四棱锥,底面ABCD是正方形,将侧面PBC水平放置,则这个几何体的俯视图的面积为(  )
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{2}$C.$\frac{4\sqrt{3}}{3}$D.$\frac{5\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,在正方形ABCD-A1B1C1D1中,若平面a平行于该正方体的体对角线BD,则平面a在该正方体上截得的图形不可能为②③④(填序号)
①正方形;②正三角形;③正六边形;④直角梯形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设某市现有从事第二产业人员100万人,平均每人每年创造产值a万元(a为正常数),现在决定从中分流x万人去加强第三产业.分流后,继续从事第二产业的人员平均每人每年创造产值可增加2x%(0<x<100).而分流出的从事第三产业的人员,平均每人每年可创造产值1.2a万元.
(1)若要保证第二产业的产值不减少,求x的取值范围;
(2)在(1)的条件下,问应分流出多少人,才能使该市第二、三产业的总产值增加最多?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图是一个几何体的三视图,则这个几何体的体积为(  )
A.$\frac{16}{3}$B.$\frac{32}{3}$C.$\frac{64}{3}$D.16

查看答案和解析>>

同步练习册答案