精英家教网 > 高中数学 > 题目详情
14.在平面直角坐标系中,O为坐标原点,从单位圆外一点A引圆O的两条切线,切点分别为B1,B2,若满足条件|$\overrightarrow{c}$-($\overrightarrow{O{B}_{1}}$+$\overrightarrow{O{B}_{2}}$)|=|$\overrightarrow{O{B}_{1}}$-$\overrightarrow{O{B}_{2}}$|的向量$\overrightarrow{c}$的模最大时,则$\overrightarrow{A{B}_{1}}$•$\overrightarrow{A{B}_{2}}$=0.

分析 根据条件确定$\overrightarrow{c}$的终点的轨迹,寻找|$\overrightarrow{c}$|取得最大值时的条件,从而得出$\overrightarrow{A{B}_{1}}$•$\overrightarrow{A{B}_{2}}$的值.

解答 解:设$\overrightarrow{O{B}_{1}}+\overrightarrow{O{B}_{2}}$=$\overrightarrow{OD}$,则D在线段OA上,设$\overrightarrow{OC}$=$\overrightarrow{c}$,
∵|$\overrightarrow{c}$-($\overrightarrow{O{B}_{1}}$+$\overrightarrow{O{B}_{2}}$)|=|$\overrightarrow{O{B}_{1}}$-$\overrightarrow{O{B}_{2}}$|=|$\overrightarrow{{B}_{2}{B}_{1}}$|.
∴C的轨迹在以D为圆心,以|B1B2|为半径的圆上,
∴|$\overrightarrow{c}$|的最大值为|$\overrightarrow{OD}$|+|$\overrightarrow{{B}_{1}{B}_{2}}$|=|$\overrightarrow{O{B}_{1}}+\overrightarrow{O{B}_{2}}$|+|$\overrightarrow{O{B}_{1}}-\overrightarrow{O{B}_{2}}$|,
∴当|$\overrightarrow{O{B}_{1}}+\overrightarrow{O{B}_{2}}$|=|$\overrightarrow{O{B}_{1}}-\overrightarrow{O{B}_{2}}$|时,即$\overrightarrow{O{B}_{1}}$⊥$\overrightarrow{O{B}_{2}}$时,|$\overrightarrow{c}$|取得最大值.
此时,四边形AB1OB2为正方形,
∴$\overrightarrow{A{B}_{1}}•\overrightarrow{A{B}_{2}}=0$.
故答案为:0.

点评 本题考查了平面向量线性运算的几何意义,平面向量的数量积运算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.直棱柱ABCD-A1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB=2AD=2CD=2.
(1)求证:AC⊥平面BB1C1C;
(2)若P为A1B1的中点,求证:DP∥平面BCB1,且DP∥平面ACB1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.将函数y=sin(2x+$\frac{π}{3}$)的图象经过怎样的平移后所得的图象关于点$({-\frac{π}{12},0})$中心对称(  )
A.向左平移$\frac{π}{12}$单位B.向左平移$\frac{π}{6}$单位C.向右平移$\frac{π}{12}$单位D.向右平移$\frac{π}{6}$单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.(1+x)4+(1+x)5+…+(1+x)9展开式中,x3项的系数为209.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=ax3-x2+x-6在(-∞,+∞)上既有极大值又有极小值,则a的取值范围为$a<\frac{1}{3}$且a≠0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知点A的极坐标为(2,$\frac{π}{6}$),直线l的极坐标方程为ρsin(θ+$\frac{π}{3}$)=$\frac{1}{2}$,则点A到直线l的距离为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{2x}-1(x≤0)}\\{f(x-1)+1(x>0)}\end{array}\right.$,把函数p(x)=f(x)-x的零点从小到大的顺序排成一列,依次为x1、x2、x3,…,则x3+x5与2x4大小关系为(  )
A.x3+x5<2x4B.x3+x5=2x4C.x3+x5>2x4D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.数列{an}的前n项和为Sn,且a1=1,an+1=2Sn+1,数列{bn}为等差数列,且b3=3,b5=7.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若对任意的$n∈{N^*},({S_n}+\frac{1}{2})•k≥{b_n}$恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.运行如图所示的程序框图.若输入x=5,则输出y的值为(  )
A.49B.25C.33D.7

查看答案和解析>>

同步练习册答案