精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=ax3-x2+x-6在(-∞,+∞)上既有极大值又有极小值,则a的取值范围为$a<\frac{1}{3}$且a≠0.

分析 求出导函数,根据函数在区间(-∞,+∞)内既有极大值,又有极小值,导函数为0的方程有不等的实数根,可求实数a的取值范围.

解答 解:函数f(x)=ax3-x2+x-6,
则导函数:f′(x)=3ax2-2x+1,
∵函数f(x)=ax3-x2+x-6既有极大值又有极小值,
∴a≠0,且△=4-12a>0,∴$a<\frac{1}{3}$且a≠0.
故答案为:$a<\frac{1}{3}$且a≠0.

点评 本题的考点是函数在某点取得极值的条件,主要考查学生利用导数研究函数极值的能力,关键是将问题转化为导函数为0的方程有不等的实数根.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.下列四个命题:
①样本方差反映的是所有样本数据与样本平均值的偏离程度;
②某只股票经历了l0个跌停(每次跌停,即下跌l0%)后需再经过10个涨停(每次涨停,即上涨10%)就可以回到原来的净值;
③某校高三一级部和二级部的人数分别是m、n,本次期末考试两级部;数学平均分分别是a、b,则这两个级部的数学平均分为$\frac{na}{m}+\frac{mb}{n}$.
④某中学采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查,现将800名学生从001到800进行编号,已知从497--512这16个数中取得的学生编号是503,则初始在第1小组00l~016中随机抽到的学生编号是007.
其中真命题的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图是一个几何体的三视图,若它的体积是3,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知x>0,y>0,$\frac{2}{x}+\frac{1}{y}$=1,若2x+y>m2+2m恒成立,则实数m的取值范围是(  )
A.(-∞,-1-$\sqrt{10}$)B.$(-1-\sqrt{10},-1+\sqrt{10})$C.$[{-1+\sqrt{10},+∞})$D.$[{-1-\sqrt{10},-1+\sqrt{10}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如果将直线l向右平移3个单位,再向上平移2个单位后所得的直线与l重合,则该直线l的斜率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在平面直角坐标系中,O为坐标原点,从单位圆外一点A引圆O的两条切线,切点分别为B1,B2,若满足条件|$\overrightarrow{c}$-($\overrightarrow{O{B}_{1}}$+$\overrightarrow{O{B}_{2}}$)|=|$\overrightarrow{O{B}_{1}}$-$\overrightarrow{O{B}_{2}}$|的向量$\overrightarrow{c}$的模最大时,则$\overrightarrow{A{B}_{1}}$•$\overrightarrow{A{B}_{2}}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,F1,F2是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的左、右两个焦点,|F1F2|=4,长轴长为6,又A,B分别是椭圆C上位于x轴上方的两点,且满足$\overrightarrow{A{F_1}}$=2$\overrightarrow{B{F_2}}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求直线AF1的方程;
(Ⅲ)求平行四边形AA1B1B的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设f(x)=3ax2+2bx+c,若a+b+c=0,f(0)>0,f(1)>0
(1)求证:a>0,-2$<\frac{b}{a}$<-1;
(2)函数f(x)在(0,1)内有零点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.关于f(x)=3sin(2x+$\frac{π}{4}$)有以下命题,
①若f(x1)=f(x2)=0,则x1-x2=kπ(k∈Z);
②f(x)图象与g(x)=3cos(2x-$\frac{π}{4}$)图象相同;
③f(x)在区间[-$\frac{7π}{8}$,-$\frac{3π}{8}$]是减函数;
④f(x)图象关于点(-$\frac{π}{8}$,0)对称.
其中正确的命题序号是(  )
A.②③④B.①④C.①②③D.②③

查看答案和解析>>

同步练习册答案