分析 (1)推导出BB1⊥AC,BC⊥AC,由此能证明 AC⊥平面BB1C1C.
(2)推导出DCB1P为平行四边形,由此能证明DP∥面ACB1,同理,DP∥面BCB1.
解答 证明:(1)直棱柱ABCD-A1B1C1D1中,BB1⊥平面ABCD,![]()
∴BB1⊥AC.…(2分)
又∵∠BAD=∠ADC=90°,AB=2AD=2CD=2,
∴AC=$\sqrt{2}$,∠CAB=45°,∴BC=$\sqrt{2}$,∴BC⊥AC.…(5分)
又BB1∩BC=B,BB1,BC?平面BB1C1C,
∴AC⊥平面BB1C1C.…(7分)
(2)∵由P为A1B1的中点,又PB1∥AB,且PB1=$\frac{1}{2}$AB.…(9分)
又∵DC‖AB,DC=$\frac{1}{2}$AB,∴DC∥PB1,且DC=PB1,…(11分)
∴DCB1P为平行四边形,从而CB1∥DP.
又CB1?面ACB1,DP?面ACB1,∴DP∥面ACB1…(13分)
同理,DP∥面BCB1. …(14分)
点评 本题考查线面平行、线面垂直的证明,是中档题,解题时要认真审题,注意空间中线线、线面、面面关系的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{2}{3}$ | B. | -2 | C. | 0 | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com