精英家教网 > 高中数学 > 题目详情
18.已知:Sn为数列{an}的前n项和,Sn=n2+n-1
(1)求{an}的通项公式an
(2)求和:$\frac{1}{{{S_1}+1}}+\frac{1}{{{S_2}+1}}$+…+$\frac{1}{{{S_{2016}}+1}}$.

分析 (1)根据an与Sn的关系计算an
(2)使用裂项法求和.

解答 解:(1)当n=1时,a1=S1=1,
当n≥2时,an=Sn-Sn-1=(n2+n-1)-[(n-1)2+(n-1)-1]=2n,
∴an=$\left\{\begin{array}{l}{1,n=1}\\{2n,n≥2}\end{array}\right.$.
(2)$\frac{1}{{S}_{n}+1}$=$\frac{1}{{n}^{2}+n}$=$\frac{1}{n}$-$\frac{1}{n+1}$.
∴$\frac{1}{{{S_1}+1}}+\frac{1}{{{S_2}+1}}$+…+$\frac{1}{{{S_{2016}}+1}}$=1-$\frac{1}{2}$+$\frac{1}{2}-\frac{1}{3}$+…+$\frac{1}{2016}-\frac{1}{2017}$=1-$\frac{1}{2017}$=$\frac{2016}{2017}$.

点评 本题考查了数列通项公式的求法,裂项法数列求和,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知f(x)=sinx+tan$\frac{1}{2}$x+1且f(-a)=11,则f(2π+a)=(  )
A.11B.9C.0D.-9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.函数f(x)=x3+ax2+bx+c,过曲线y=f(x)上的点(1,f(1))的切线方程为y=3x+1
(1)若y=f(x)在x=-2时有极值,求f(x)的表达式;
(2)在(1)的条件下,求函数y=f(x)在[-3,1]上的最大值;
(3)若函数y=f(x)在区间(-∞,1)上单调递增,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一束光线自点P(1,1,1)出发,被xOy平面反射到达点Q(3,3,6)被吸收,那么光所走的距离是(  )
A.$\sqrt{37}$B.$\sqrt{33}$C.$\sqrt{47}$D.$\sqrt{57}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.计算:
(1)32${\;}^{\frac{3}{5}}$+0.5-2
(2)2${\;}^{lo{g}_{2}3}$•log2$\frac{1}{8}$+lg4+2lg5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知集合M={x|x2-2ax+1=0}中有两个不同的元素,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.集合A={x|x2-x=0},B={x|x5-4x2+5x-2=0},则A∩B={1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.定义在R上的函数f(x)满足f(x-2)=-f(x),且在区间[0,1]上是增函数,又函数f(x-1)的图象关于点(1,0)对称,若方程f(x)=m在区间[-4,4]上有4个不同的根,则这些根之和为(  )
A.-3B.±3C.4D.±4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.直棱柱ABCD-A1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB=2AD=2CD=2.
(1)求证:AC⊥平面BB1C1C;
(2)若P为A1B1的中点,求证:DP∥平面BCB1,且DP∥平面ACB1

查看答案和解析>>

同步练习册答案