分析 (1)根据an与Sn的关系计算an;
(2)使用裂项法求和.
解答 解:(1)当n=1时,a1=S1=1,
当n≥2时,an=Sn-Sn-1=(n2+n-1)-[(n-1)2+(n-1)-1]=2n,
∴an=$\left\{\begin{array}{l}{1,n=1}\\{2n,n≥2}\end{array}\right.$.
(2)$\frac{1}{{S}_{n}+1}$=$\frac{1}{{n}^{2}+n}$=$\frac{1}{n}$-$\frac{1}{n+1}$.
∴$\frac{1}{{{S_1}+1}}+\frac{1}{{{S_2}+1}}$+…+$\frac{1}{{{S_{2016}}+1}}$=1-$\frac{1}{2}$+$\frac{1}{2}-\frac{1}{3}$+…+$\frac{1}{2016}-\frac{1}{2017}$=1-$\frac{1}{2017}$=$\frac{2016}{2017}$.
点评 本题考查了数列通项公式的求法,裂项法数列求和,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{37}$ | B. | $\sqrt{33}$ | C. | $\sqrt{47}$ | D. | $\sqrt{57}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | ±3 | C. | 4 | D. | ±4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com