分析 (Ⅰ)证明:ED⊥平面ABCD,BD⊥平面ADEF,即可证明平面BDM⊥平面ADEF;
(Ⅱ)在平面DMC内,过M作MN⊥DC,垂足为N,则MN∥ED,利用三棱锥的体积计算公式求出MN,可得结论.
解答
(Ⅰ)证明:∵DC=BC=1,DC⊥BC,
∴BD=$\sqrt{2}$,
∵AD=$\sqrt{2}$,AB=2,
∴AD2+BD2=AB2,
∴∠ADB=90°,
∴AD⊥BD,
∵平面ADEF⊥平面ABCD,ED⊥AD,平面ADEF∩平面ABCD=AD,
∴ED⊥平面ABCD,
∴BD⊥ED,
∵AD∩DE=D,
∴BD⊥平面ADEF,
∵BD?平面BDM,
∴平面BDM⊥平面ADEF;
(Ⅱ)解:如图,在平面DMC内,过M作MN⊥DC,垂足为N,则MN∥ED,
∵ED⊥平面ABCD,
∴MN⊥平面ABCD,
∵VB-CDM=VM-CDB=$\frac{1}{3}MN•{S}_{△BDC}$=$\frac{\sqrt{2}}{18}$,
∴$\frac{1}{3}×\frac{1}{2}×1×1×MN$=$\frac{\sqrt{2}}{18}$,
∴MN=$\frac{\sqrt{2}}{3}$,
∴$\frac{MN}{ED}=\frac{CM}{CE}$=$\frac{\frac{\sqrt{2}}{3}}{\sqrt{2}}$=$\frac{1}{3}$,
∴CM=$\frac{1}{3}$CE,
∴点M在线段CE的三等分点且靠近C处.
点评 本题考查的知识点是平面与平面垂直的判定与性质,考查三棱锥体积的计算,熟练掌握空间直线与平面不同位置关系(平行和垂直)的判定定理、性质定理、定义及几何特征是解答本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,0)∪(0,1) | B. | (-∞,-1)∪(0,1) | C. | (-1,0)∪(1,+∞) | D. | (-∞,-1)∪(1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com