精英家教网 > 高中数学 > 题目详情
4.如图,边长为$\sqrt{2}$的正方形ADEF与梯形ABCD所在的平面互相垂直,其中AB∥CD,AB⊥BC,DC=BC=$\frac{1}{2}$AB=1,点M在线段EC上.
(Ⅰ)证明:平面BDM⊥平面ADEF;
(Ⅱ)判断点M的位置,使得三棱锥B-CDM的体积为$\frac{{\sqrt{2}}}{18}$.

分析 (Ⅰ)证明:ED⊥平面ABCD,BD⊥平面ADEF,即可证明平面BDM⊥平面ADEF;
(Ⅱ)在平面DMC内,过M作MN⊥DC,垂足为N,则MN∥ED,利用三棱锥的体积计算公式求出MN,可得结论.

解答 (Ⅰ)证明:∵DC=BC=1,DC⊥BC,
∴BD=$\sqrt{2}$,
∵AD=$\sqrt{2}$,AB=2,
∴AD2+BD2=AB2
∴∠ADB=90°,
∴AD⊥BD,
∵平面ADEF⊥平面ABCD,ED⊥AD,平面ADEF∩平面ABCD=AD,
∴ED⊥平面ABCD,
∴BD⊥ED,
∵AD∩DE=D,
∴BD⊥平面ADEF,
∵BD?平面BDM,
∴平面BDM⊥平面ADEF;
(Ⅱ)解:如图,在平面DMC内,过M作MN⊥DC,垂足为N,则MN∥ED,
∵ED⊥平面ABCD,
∴MN⊥平面ABCD,
∵VB-CDM=VM-CDB=$\frac{1}{3}MN•{S}_{△BDC}$=$\frac{\sqrt{2}}{18}$,
∴$\frac{1}{3}×\frac{1}{2}×1×1×MN$=$\frac{\sqrt{2}}{18}$,
∴MN=$\frac{\sqrt{2}}{3}$,
∴$\frac{MN}{ED}=\frac{CM}{CE}$=$\frac{\frac{\sqrt{2}}{3}}{\sqrt{2}}$=$\frac{1}{3}$,
∴CM=$\frac{1}{3}$CE,
∴点M在线段CE的三等分点且靠近C处.

点评 本题考查的知识点是平面与平面垂直的判定与性质,考查三棱锥体积的计算,熟练掌握空间直线与平面不同位置关系(平行和垂直)的判定定理、性质定理、定义及几何特征是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,梯形ABCD中,DC∥AB,AD=DC=CB=2,AB=4,矩形AEFC中,AE=$\sqrt{3}$,平面AEFC⊥平面ABCD,点G是线段EF的中点.
(Ⅰ)求证:AG⊥平面BCG;
(Ⅱ)若点A,B,C,E,F都在球O的球面上,求球O的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=$\left\{{\begin{array}{l}{ln(-x){,_{\;}}x<0}\\{-lnx,{{,}_{\;}}x>0}\end{array}}$若f(m)>f(-m),则实数m的取值范围是(  )
A.(-1,0)∪(0,1)B.(-∞,-1)∪(0,1)C.(-1,0)∪(1,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.不等式$\frac{2x-3}{x+4}$>0的解集为{x|x<-4 或x>$\frac{3}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)上的动点P到两个焦点的距离之和为6,且到右焦点距离的最小值为$3-2\sqrt{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l和椭圆C交于M、N两点,A为椭圆的右顶点,$\overrightarrow{AM}•\overrightarrow{AN}=0$,求△AMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,射线OA,OB所在的直线的方向向量分别为$\overrightarrow{d_1}=({1,k})$,$\overrightarrow{d_2}=({1,-k})({k>0})$,点P在∠AOB内,PM⊥OA于M,PN⊥OB于N;
(1)若k=1,$P({\frac{3}{2},\frac{1}{2}})$,求|OM|的值;
(2)若P(2,1),△OMP的面积为$\frac{6}{5}$,求k的值;
(3)已知k为常数,M,N的中点为T,且S△MON=$\frac{1}{k}$,当P变化时,求动点T轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的前n项和为Sn,且an>0,${a_n}•{S_n}={({\frac{1}{4}})^n}({n∈{N^*}})$
(1)若bn=1+log2(Sn•an),求数列{bn}的前n项和Tn
(2)若0<θn<$\frac{π}{2}$,2n•an=tanθn,求证:数列{θn}为等比数列,并求出其通项公式;
(3)记${c_n}=|{{a_1}-\frac{1}{2}}|+|{{a_2}-\frac{1}{2}}|+|{{a_3}-\frac{1}{2}}|+…+|{{a_n}-\frac{1}{2}}$|,若对任意的n∈N*,cn≥m恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z=$\frac{1}{-1+i}$(i为虚数单位),则z在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系xOy中,已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点(1,$\frac{\sqrt{6}}{2}$),其左、右焦点分别为F1、F2,离心率为$\frac{\sqrt{2}}{2}$.
(1)求椭圆E的方程;
(2)若A、B分别为椭圆E的左、右顶点,动点M满足MB⊥AB,且MA交椭圆E于点P.
(i)求证:$\overrightarrow{OP}$•$\overrightarrow{OM}$为定值;
(ii)设PB与以PM为直径的圆的另一交点为Q,问:直线MQ是否过定点,并说明理由.

查看答案和解析>>

同步练习册答案